Secoisolariciresinol diglucoside

Secoisolariciresinol diglucoside
Chemical structure of SDG
Other names
3D model (JSmol)
Molar mass 686.704 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

Secoisolariciresinol diglucoside (SDG) is an antioxidant[1] phytoestrogen present in flax, sunflower, sesame, and pumpkin seeds. In food, it can be found in commercial breads containing flaxseed.[2] It is a precursor of mammal lignans[3] which are produced in the colon from chemicals in foods.


Secoisolariciresinol diglucoside can be isolated from de-fatted (hexane extraction) flaxseed by extraction of the lignan polymer precursor with a water/acetone mixture, followed by acetone removal and alkaline hydrolysis.[4]

Or, it can be extracted from the shell of whole flax through a cold-milled process without using chemicals.

Studies on biological effects[edit]

Secoisolariciresinol diglucoside slows the growth of human breast cancer in mice.[5]

Secoisolariciresinol diglucoside may play very different role in people with the already existent cancer. In the Grade IV histology group of adult patients diagnosed with malignant glioma, high intake of secoisolariciresinol (for highest tertile compared to lowest tertile, in all cases) was associated with poorer survival.[6] Note however that glioma is located behind the Blood–brain barrier in which larger molecules such as SDG may not penetrate efficiently.

In rabits SDG reduced hypercholesterolemic atherosclerosis and this effect was associated with a decrease in serum cholesterol, LDL-C, and lipid peroxidation product and an increase in HDL-C and antioxidant reserve.[7]

SDG has been shown to counter oxidative stress in human colonic epithelial tissue and protect against mtDNA damage in vitro, by H2O2 exposure, in a dose-dependent manner.[citation needed]


  1. ^ Adolphe, J. L., Whiting, S. J., Juurlink, B. H. J., Thorpe, L. U., & Alcorn, J. (2010). "Health effects with consumption of the flax lignan secoisolariciresinol diglucoside". The British Journal of Nutrition. 103 (7): 929–38. doi:10.1017/S0007114509992753. PMID 20003621.CS1 maint: Multiple names: authors list (link)
  2. ^ C. Strandås, A. Kamal-Eldin, R. Andersson and P. Åman (2008). "Phenolic glucosides in bread containing flaxseed". Food Chemistry. 110 (4): 997–999. doi:10.1016/j.foodchem.2008.02.088.CS1 maint: Multiple names: authors list (link)
  3. ^ Thompson, LU; Robb, P; Serraino, M; Cheung, F (1991). "Mammalian lignan production from various foods". Nutrition and Cancer. 16 (1): 43–52. doi:10.1080/01635589109514139. PMID 1656395.
  4. ^ US 6806356, "Process for recovering secoisolariciresinol diglycoside from de-fatted flaxseed" 
  5. ^ Chen; et al. (2009). "Flaxseed and Pure Secoisolariciresinol Diglucoside, but Not Flaxseed Hull, Reduce Human Breast Tumor Growth (MCF-7) in Athymic Mice". The Journal of Nutrition. 139 (11): 2061–6. doi:10.3945/jn.109.112508. PMID 19776177.
  6. ^ Delorenze, Gerald N; McCoy, Lucie; Tsai, Ai-Lin; Quesenberry Jr, Charles P; Rice, Terri; Il'Yasova, Dora; Wrensch, Margaret (2010). "Daily intake of antioxidants in relation to survival among adult patients diagnosed with malignant glioma". BMC Cancer. 10: 215. doi:10.1186/1471-2407-10-215. PMC 2880992. PMID 20482871.
  7. ^ Prasad, K (1999). "Reduction of Serum Cholesterol and Hypercholesterolemic Atherosclerosis in Rabbits by Secoisolariciresinol Diglucoside Isolated from Flaxseed". Circulation. 99 (10): 1355–1362. doi:10.1161/01.CIR.99.10.1355. PMID 10077521.