Trichome

Content deleted Content added
correct IUPAC name
86.145.56.236 (talk)
No edit summary
 
(12 intermediate revisions by 10 users not shown)
Line 1: Line 1:
{{cs1 config|name-list-style=vanc}}
{{chembox
{{chembox
| Verifiedfields = changed
| Verifiedfields = changed
Line 10: Line 11:
| ImageAlt1 = Ball-and-stick model of the kaempferol molecule
| ImageAlt1 = Ball-and-stick model of the kaempferol molecule
| IUPACName = 3,4′,5,7-Tetrahydroxyflavone
| IUPACName = 3,4′,5,7-Tetrahydroxyflavone
| PIN = 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4''H''-1-benzopyran-4-one
| SystematicName = 3,5,7-Trihydroxy-2-(4-hydroxyphenyl)-4''H''-1-benzopyran-4-one
| OtherNames = Kaempherol; Robigenin; Pelargidenolon; Rhamnolutein; Rhamnolutin; Populnetin; Trifolitin; Kempferol; Swartziol
| OtherNames = Kaempherol; Robigenin; Pelargidenolon; Rhamnolutein; Rhamnolutin; Populnetin; Trifolitin; Kempferol; Swartziol
|Section1={{Chembox Identifiers
|Section1={{Chembox Identifiers
Line 23: Line 24:
| ChEBI_Ref = {{ebicite|changed|EBI}}
| ChEBI_Ref = {{ebicite|changed|EBI}}
| ChEBI = 28499
| ChEBI = 28499
| SMILES = C1=CC(=CC=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O
| SMILES = O=c1c(O)c(-c2ccc(O)cc2)oc2cc(O)cc(O)c12
| StdInChI = 1S/C15H10O6/c16-8-3-1-7(2-4-8)15-14(20)13(19)12-10(18)5-9(17)6-11(12)21-15/h1-6,16-18,20H
| StdInChIKey = IYRMWMYZSQPJKC-UHFFFAOYSA-N
| PubChem = 5280863
| PubChem = 5280863
| KEGG_Ref = {{keggcite|changed|kegg}}
| KEGG_Ref = {{keggcite|changed|kegg}}
Line 35: Line 38:
}}
}}
}}
}}
'''Kaempferol''' (3,4′,5,7-tetrahydroxyflavone) is a natural [[flavonol]], a type of [[flavonoid]], found in a variety of plants and plant-derived foods including [[kale]], [[Bean|beans]], [[tea]], [[spinach]] and [[Broccoli|broccoli.]] <ref>{{Cite journal|last=Holland|first=Thomas M.|last2=Agarwal|first2=Puja|last3=Wang|first3=Yamin|last4=Leurgans|first4=Sue E.|last5=Bennett|first5=David A.|last6=Booth|first6=Sarah L.|last7=Morris|first7=Martha Clare|date=2020-01-29|title=Dietary flavonols and risk of Alzheimer dementia|url=http://www.neurology.org/lookup/doi/10.1212/WNL.0000000000008981|journal=Neurology|language=en|pages=10.1212/WNL.0000000000008981|doi=10.1212/WNL.0000000000008981|issn=0028-3878|pmc=7282875}}</ref> Kaempferol is a yellow crystalline solid with a melting point of {{convert|276-278|C|F}}. It is slightly soluble in water and highly soluble in hot [[ethanol]], [[ethers]], and [[Dimethyl sulfoxide|DMSO]]. Kaempferol is named for 17th-century German naturalist [[Engelbert Kaempfer]].<ref name=MW>[https://www.merriam-webster.com/dictionary/kaempferol Kaempferol] at [[Merriam-Webster]].com; retrieved October 20, 2017</ref>
'''Kaempferol''' (3,4′,5,7-tetrahydroxyflavone) is a natural [[flavonol]], a type of [[flavonoid]], found in a variety of plants and plant-derived foods including [[kale]], [[bean]]s, [[tea]], [[spinach]], and [[broccoli]].<ref>{{Cite journal|last1=Holland|first1=Thomas M.|last2=Agarwal|first2=Puja|last3=Wang|first3=Yamin|last4=Leurgans|first4=Sue E.|last5=Bennett|first5=David A.|last6=Booth|first6=Sarah L.|last7=Morris|first7=Martha Clare|author-link7=Martha Clare Morris|date=2020-01-29|title=Dietary flavonols and risk of Alzheimer dementia|journal=Neurology|language=en|volume=94|issue=16|pages=e1749–e1756|doi=10.1212/WNL.0000000000008981|issn=0028-3878|pmc=7282875|pmid=31996451}}</ref> Kaempferol is a yellow crystalline solid with a melting point of {{convert|276-278|C|F}}. It is slightly soluble in water and highly soluble in hot [[ethanol]], [[ethers]], and [[Dimethyl sulfoxide|DMSO]]. Kaempferol is named for 17th-century German naturalist [[Engelbert Kaempfer]].<ref name=MW>[https://www.merriam-webster.com/dictionary/kaempferol Kaempferol] at [[Merriam-Webster]].com; retrieved October 20, 2017</ref>


==Natural occurrence==
==Natural occurrence==
Kaempferol is a secondary metabolite found in many plants, plant-derived foods, and traditional medicines.<ref name="calderon" /> Its flavor is considered bitter.
Kaempferol is a secondary metabolite found in many plants, plant-derived foods, and traditional medicines.<ref name="calderon" /> Its flavor is considered bitter.


===In plants and food===
===In plants and food===


Kaempferol is common in [[Pteridophyta]], [[Pinophyta]] and [[Angiospermae]]. Within Pteridophyta and Pinophyta, kaempferol has been found in diverse families. Kaempferol has also been identified in both [[Dicotyledons]] and [[Monocotyledons]] of Angiosperms.<ref name=calderon>{{cite journal | vauthors = Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M | title = A review on the dietary flavonoid kaempferol | journal = Mini Reviews in Medicinal Chemistry | volume = 11 | issue = 4 | pages = 298–344 | date = April 2011 | pmid = 21428901 | doi = 10.2174/138955711795305335 }}</ref> The total average intake of flavonols and flavones in a normal diet is estimated as 23&nbsp;mg/day, to which kaempferol contributes approximately 17%.<ref name=liu>{{cite journal | vauthors = Liu RH | title = Health-promoting components of fruits and vegetables in the diet | journal = Advances in Nutrition | volume = 4 | issue = 3 | pages = 384S–92S | date = May 2013 | pmid = 23674808 | pmc = 3650511 | doi = 10.3945/an.112.003517 }}</ref> Common foods that contain kaempferol include: apples,<ref name=kim>{{cite journal | vauthors = Kim SH, Choi KC | title = Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models | journal = Toxicological Research | volume = 29 | issue = 4 | pages = 229–34 | date = December 2013 | pmid = 24578792 | pmc = 3936174 | doi = 10.5487/TR.2013.29.4.229 }}</ref> grapes,<ref name="kim" /> tomatoes,<ref name="kim" /> green tea,<ref name="kim" /> potatoes,<ref name="liu" /> onions,<ref name="calderon" /> broccoli,<ref name="calderon" /> Brussels sprouts,<ref name="calderon" /> squash,<ref name="calderon" /> cucumbers,<ref name="calderon" /> lettuce,<ref name="calderon" /> green beans,<ref name="calderon" /> peaches,<ref name="calderon" /> blackberries,<ref name="calderon" /> raspberries,<ref name="calderon" /> and spinach.<ref name="calderon" /> Plants that are known to contain kaempferol include ''[[Aloe vera]]'',<ref name="calderon" /> ''[[Coccinia grandis]]'',<ref name="calderon" /> ''[[Cuscuta chinensis]]'',<ref>{{cite journal | vauthors = Donnapee S, Li J, Yang X, Ge AH, Donkor PO, Gao XM, Chang YX | title = Cuscuta chinensis Lam.: A systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine | journal = Journal of Ethnopharmacology | volume = 157 | issue = C | pages = 292–308 | date = November 2014 | pmid = 25281912 | doi = 10.1016/j.jep.2014.09.032 }}</ref> ''[[Euphorbia pekinensis]]'',<ref name="calderon" /> ''[[Glycine max]]'',<ref name="calderon" /> ''[[Hypericum perforatum]]'',<ref name="calderon" /> ''[[Scots pine|Pinus sylvestris]]'',<ref>{{cite journal | vauthors = de la Luz Cádiz-Gurrea M, Fernández-Arroyo S, Segura-Carretero A | title = Pine bark and green tea concentrated extracts: antioxidant activity and comprehensive characterization of bioactive compounds by HPLC-ESI-QTOF-MS | journal = International Journal of Molecular Sciences | volume = 15 | issue = 11 | pages = 20382–402 | date = November 2014 | pmid = 25383680 | pmc = 4264173 | doi = 10.3390/ijms151120382 }}</ref> ''[[Moringa oleifera]]'',<ref>{{cite journal | vauthors = Anwar F, Latif S, Ashraf M, Gilani AH | title = Moringa oleifera: a food plant with multiple medicinal uses | journal = Phytotherapy Research | volume = 21 | issue = 1 | pages = 17–25 | date = January 2007 | pmid = 17089328 | doi = 10.1002/ptr.2023 | doi-access = free }}</ref> ''[[Rosmarinus officinalis]]'',<ref name="calderon" /> ''[[Sambucus nigra]]'',<ref name="calderon" /> and ''[[Toona sinensis]],''<ref name="calderon" /> and ''[[Ilex]]''.<ref name="calderon" /> It also is present in [[endive]].<ref name="DuPont_2004">{{cite journal | vauthors = DuPont MS, Day AJ, Bennett RN, Mellon FA, Kroon PA | title = Absorption of kaempferol from endive, a source of kaempferol-3-glucuronide, in humans | journal = European Journal of Clinical Nutrition | volume = 58 | issue = 6 | pages = 947–54 | date = June 2004 | pmid = 15164116 | doi = 10.1038/sj.ejcn.1601916 | doi-access = free }}</ref>
Kaempferol is common in [[Pteridophyta]], [[Pinophyta]], and [[Angiospermae]]. Within Pteridophyta and Pinophyta, kaempferol has been found in diverse families. Kaempferol has also been identified in [[Dicotyledons]] and [[Monocotyledons]] of Angiosperms.<ref name=calderon>{{cite journal | vauthors = Calderón Montaño JM, Burgos Morón E, Pérez Guerrero C, López Lázaro M | title = A review on the dietary flavonoid kaempferol | journal = Mini Reviews in Medicinal Chemistry | volume = 11 | issue = 4 | pages = 298–344 | date = April 2011 | pmid = 21428901 | doi = 10.2174/138955711795305335 }}</ref> The total average intake of flavonols and flavones in a normal diet is estimated as 23&nbsp;mg/day, to which kaempferol contributes approximately 17%.<ref name=liu>{{cite journal | vauthors = Liu RH | title = Health-promoting components of fruits and vegetables in the diet | journal = Advances in Nutrition | volume = 4 | issue = 3 | pages = 384S–392S | date = May 2013 | pmid = 23674808 | pmc = 3650511 | doi = 10.3945/an.112.003517 }}</ref> Common foods that contain kaempferol include: [[apple]]s,<ref name=kim>{{cite journal | vauthors = Kim SH, Choi KC | title = Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models | journal = Toxicological Research | volume = 29 | issue = 4 | pages = 229–234 | date = December 2013 | pmid = 24578792 | pmc = 3936174 | doi = 10.5487/TR.2013.29.4.229 }}</ref> [[grape]]s,<ref name="kim" /> [[tomato]]es,<ref name="kim" /> [[green tea]],<ref name="kim" /> [[potato]]es,<ref name="liu" /> [[onion]]s,<ref name="calderon" /> [[broccoli]],<ref name="calderon" /> [[Brussels sprout]]s,<ref name="calderon" /> [[Cucurbita|squash]],<ref name="calderon" /> [[cucumber]]s,<ref name="calderon" /> [[lettuce]],<ref name="calderon" /> [[green bean]]s,<ref name="calderon" /> [[peach]]es,<ref name="calderon" /> [[Blackberry|blackberries]],<ref name="calderon" /> [[Raspberry|raspberries]],<ref name="calderon" /> and [[spinach]].<ref name="calderon" /> Plants that are known to contain kaempferol include ''[[Aloe vera]]'',<ref name="calderon" /> ''[[Coccinia grandis]]'',<ref name="calderon" /> ''[[Cuscuta chinensis]]'',<ref>{{cite journal | vauthors = Donnapee S, Li J, Yang X, Ge AH, Donkor PO, Gao XM, Chang YX | title = Cuscuta chinensis Lam.: A systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine | journal = Journal of Ethnopharmacology | volume = 157 | issue = C | pages = 292–308 | date = November 2014 | pmid = 25281912 | doi = 10.1016/j.jep.2014.09.032 }}</ref> ''[[Euphorbia pekinensis]]'',<ref name="calderon" /> ''[[Glycine max]]'',<ref name="calderon" /> ''[[Hypericum perforatum]]'',<ref name="calderon" /> ''[[Scots pine|Pinus sylvestris]]'',<ref>{{cite journal | vauthors = de la Luz Cádiz-Gurrea M, Fernández-Arroyo S, Segura-Carretero A | title = Pine bark and green tea concentrated extracts: antioxidant activity and comprehensive characterization of bioactive compounds by HPLC-ESI-QTOF-MS | journal = International Journal of Molecular Sciences | volume = 15 | issue = 11 | pages = 20382–20402 | date = November 2014 | pmid = 25383680 | pmc = 4264173 | doi = 10.3390/ijms151120382 | doi-access = free }}</ref> ''[[Moringa oleifera]]'',<ref>{{cite journal | vauthors = Anwar F, Latif S, Ashraf M, Gilani AH | title = Moringa oleifera: a food plant with multiple medicinal uses | journal = Phytotherapy Research | volume = 21 | issue = 1 | pages = 17–25 | date = January 2007 | pmid = 17089328 | doi = 10.1002/ptr.2023 | doi-access = free }}</ref> ''[[Rosmarinus officinalis]]'',<ref name="calderon" /> ''[[Sambucus nigra]]'',<ref name="calderon" /> ''[[Toona sinensis]]'',<ref name="calderon" /> and ''[[Ilex]]''.<ref name="calderon" /> It also is present in [[endive]].<ref name="DuPont_2004">{{cite journal | vauthors = DuPont MS, Day AJ, Bennett RN, Mellon FA, Kroon PA | title = Absorption of kaempferol from endive, a source of kaempferol-3-glucuronide, in humans | journal = European Journal of Clinical Nutrition | volume = 58 | issue = 6 | pages = 947–954 | date = June 2004 | pmid = 15164116 | doi = 10.1038/sj.ejcn.1601916 | doi-access = | s2cid = 25720976 }}</ref>
{| class="wikitable sortable"
{| class="wikitable sortable"
!Foods
!Foods
! data-sort-type="number" |Kaempferol
! data-sort-type="number" |Kaempferol
<small>(mg/100g)</small>
<small>(mg/100&nbsp;g)</small>
|-
|-
|[[capers]], raw
|[[capers]], raw
Line 111: Line 114:
==Biosynthesis==
==Biosynthesis==


The biosynthesis of kaempferol occurs in four major steps:<ref name=calderon/>
The biosynthesis of kaempferol occurs in four major steps:<ref name=calderon>{{cite journal | vauthors = Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M | title = A review on the dietary flavonoid kaempferol | journal = Mini Reviews in Medicinal Chemistry | volume = 11 | issue = 4 | pages = 298–344 | date = April 2011 | pmid = 21428901 | doi = 10.2174/138955711795305335 }}</ref>


*[[Phenylalanine]] is converted into [[4-coumaroyl-CoA]]
*[[Phenylalanine]] is converted into [[4-coumaroyl-CoA]]
*4-coumaroyl-CoA combines with three molecules of [[malonyl-coA]] to form [[naringenin chalcone]] (tetrahydroxychalcone) through the action of the enzyme [[chalcone synthase]]
*4-Coumaroyl-CoA combines with three molecules of [[malonyl-CoA]] to form [[naringenin chalcone]] (tetrahydroxychalcone) through the action of the enzyme [[chalcone synthase]]
*Naringenin chalcone is converted to [[naringenin]] and then a hydroxyl group is added to form [[dihydrokaempferol]]
*Naringenin chalcone is converted to [[naringenin]] and then a hydroxyl group is added to form [[dihydrokaempferol]]
*Dihydrokaempferol has a double bond introduced into it to form kaempferol
*Dihydrokaempferol has a double bond introduced into it to form kaempferol


The amino acid phenylalanine is formed from the [[Shikimate pathway]], which is the pathway that plants use in order to make aromatic amino acids. This pathway is located in the plant plastid, and is the entry to the biosynthesis of phenylpropanoids.<ref>{{cite journal | vauthors = Vogt T | title = Phenylpropanoid biosynthesis | journal = Molecular Plant | volume = 3 | issue = 1 | pages = 2–20 | date = January 2010 | pmid = 20035037 | doi = 10.1093/mp/ssp106 }}</ref>
The amino acid phenylalanine is formed from the [[Shikimate pathway]], which is the pathway that plants use in order to make aromatic amino acids. This pathway is located in the plant [[plastid]], and is the entry to the biosynthesis of phenylpropanoids.<ref>{{cite journal | vauthors = Vogt T | title = Phenylpropanoid biosynthesis | journal = Molecular Plant | volume = 3 | issue = 1 | pages = 2–20 | date = January 2010 | pmid = 20035037 | doi = 10.1093/mp/ssp106 | doi-access = free }}</ref>


The [[phenylpropanoid pathway]] is the pathway that converts phenylalanine into tetrahydroxychalcone. Flavonols, including kaempferol, are products of this pathway.<ref name="flamini">{{cite journal | vauthors = Flamini R, Mattivi F, De Rosso M, Arapitsas P, Bavaresco L | title = Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols | journal = International Journal of Molecular Sciences | volume = 14 | issue = 10 | pages = 19651–69 | date = September 2013 | pmid = 24084717 | pmc = 3821578 | doi = 10.3390/ijms141019651 }}</ref>
The [[phenylpropanoid pathway]] is the pathway that converts phenylalanine into tetrahydroxychalcone. Flavonols, including kaempferol, are products of this pathway.<ref name="flamini">{{cite journal | vauthors = Flamini R, Mattivi F, De Rosso M, Arapitsas P, Bavaresco L | title = Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols | journal = International Journal of Molecular Sciences | volume = 14 | issue = 10 | pages = 19651–19669 | date = September 2013 | pmid = 24084717 | pmc = 3821578 | doi = 10.3390/ijms141019651 | doi-access = free }}</ref>


==Notes==
==Notes==
Line 126: Line 129:


== External links ==
== External links ==
*{{Commonscat-inline}}
*{{Commons category-inline}}
*[https://web.archive.org/web/20070621083657/http://www.nal.usda.gov/fnic/foodcomp/Data/Other/IFT2003_TeaFlav.pdf Flavonoid composition of tea: Comparison of black and green teas ]
*[https://web.archive.org/web/20070621083657/http://www.nal.usda.gov/fnic/foodcomp/Data/Other/IFT2003_TeaFlav.pdf Flavonoid composition of tea: Comparison of black and green teas ]



Latest revision as of 14:07, 18 February 2024

Kaempferol
Skeletal formula of kaempferol
Ball-and-stick model of the kaempferol molecule
Names
IUPAC name
3,4′,5,7-Tetrahydroxyflavone
Systematic IUPAC name
3,5,7-Trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one
Other names
Kaempherol; Robigenin; Pelargidenolon; Rhamnolutein; Rhamnolutin; Populnetin; Trifolitin; Kempferol; Swartziol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.007.535 Edit this at Wikidata
KEGG
UNII
  • InChI=1S/C15H10O6/c16-8-3-1-7(2-4-8)15-14(20)13(19)12-10(18)5-9(17)6-11(12)21-15/h1-6,16-18,20H
    Key: IYRMWMYZSQPJKC-UHFFFAOYSA-N
  • O=c1c(O)c(-c2ccc(O)cc2)oc2cc(O)cc(O)c12
Properties
C15H10O6
Molar mass 286.23 g/mol
Density 1.688 g/mL
Melting point 276–278 °C
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Kaempferol (3,4′,5,7-tetrahydroxyflavone) is a natural flavonol, a type of flavonoid, found in a variety of plants and plant-derived foods including kale, beans, tea, spinach, and broccoli.[1] Kaempferol is a yellow crystalline solid with a melting point of 276–278 °C (529–532 °F). It is slightly soluble in water and highly soluble in hot ethanol, ethers, and DMSO. Kaempferol is named for 17th-century German naturalist Engelbert Kaempfer.[2]

Natural occurrence[edit]

Kaempferol is a secondary metabolite found in many plants, plant-derived foods, and traditional medicines.[3] Its flavor is considered bitter.

In plants and food[edit]

Kaempferol is common in Pteridophyta, Pinophyta, and Angiospermae. Within Pteridophyta and Pinophyta, kaempferol has been found in diverse families. Kaempferol has also been identified in Dicotyledons and Monocotyledons of Angiosperms.[3] The total average intake of flavonols and flavones in a normal diet is estimated as 23 mg/day, to which kaempferol contributes approximately 17%.[4] Common foods that contain kaempferol include: apples,[5] grapes,[5] tomatoes,[5] green tea,[5] potatoes,[4] onions,[3] broccoli,[3] Brussels sprouts,[3] squash,[3] cucumbers,[3] lettuce,[3] green beans,[3] peaches,[3] blackberries,[3] raspberries,[3] and spinach.[3] Plants that are known to contain kaempferol include Aloe vera,[3] Coccinia grandis,[3] Cuscuta chinensis,[6] Euphorbia pekinensis,[3] Glycine max,[3] Hypericum perforatum,[3] Pinus sylvestris,[7] Moringa oleifera,[8] Rosmarinus officinalis,[3] Sambucus nigra,[3] Toona sinensis,[3] and Ilex.[3] It also is present in endive.[9]

Foods Kaempferol

(mg/100 g)

capers, raw 259[10]
saffron 205[10]
capers, canned 131[10]
arugula, raw 59[10]
kale, raw 47[10]
mustard greens, raw 38[10]
ginger 34[10]
common bean, raw 26[10]
chinese cabbage, raw 23[10]
dill, fresh 13[10]
garden cress, raw 13[10]
chive, raw 10[10]
dock, raw 10[10]
endive, raw 10[10]
collard, raw 9[10]
broccoli, raw 8[10]
fennel leaves 7[10]
goji berry, dried 6[10]
drumstick leaves, raw 6[10]
chard, raw 4[10]

Biosynthesis[edit]

The biosynthesis of kaempferol occurs in four major steps:[3]

The amino acid phenylalanine is formed from the Shikimate pathway, which is the pathway that plants use in order to make aromatic amino acids. This pathway is located in the plant plastid, and is the entry to the biosynthesis of phenylpropanoids.[11]

The phenylpropanoid pathway is the pathway that converts phenylalanine into tetrahydroxychalcone. Flavonols, including kaempferol, are products of this pathway.[12]

Notes[edit]

  1. ^ Holland TM, Agarwal P, Wang Y, Leurgans SE, Bennett DA, Booth SL, Morris MC (2020-01-29). "Dietary flavonols and risk of Alzheimer dementia". Neurology. 94 (16): e1749–e1756. doi:10.1212/WNL.0000000000008981. ISSN 0028-3878. PMC 7282875. PMID 31996451.
  2. ^ Kaempferol at Merriam-Webster.com; retrieved October 20, 2017
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w Calderón Montaño JM, Burgos Morón E, Pérez Guerrero C, López Lázaro M (April 2011). "A review on the dietary flavonoid kaempferol". Mini Reviews in Medicinal Chemistry. 11 (4): 298–344. doi:10.2174/138955711795305335. PMID 21428901.
  4. ^ a b Liu RH (May 2013). "Health-promoting components of fruits and vegetables in the diet". Advances in Nutrition. 4 (3): 384S–392S. doi:10.3945/an.112.003517. PMC 3650511. PMID 23674808.
  5. ^ a b c d Kim SH, Choi KC (December 2013). "Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models". Toxicological Research. 29 (4): 229–234. doi:10.5487/TR.2013.29.4.229. PMC 3936174. PMID 24578792.
  6. ^ Donnapee S, Li J, Yang X, Ge AH, Donkor PO, Gao XM, Chang YX (November 2014). "Cuscuta chinensis Lam.: A systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine". Journal of Ethnopharmacology. 157 (C): 292–308. doi:10.1016/j.jep.2014.09.032. PMID 25281912.
  7. ^ de la Luz Cádiz-Gurrea M, Fernández-Arroyo S, Segura-Carretero A (November 2014). "Pine bark and green tea concentrated extracts: antioxidant activity and comprehensive characterization of bioactive compounds by HPLC-ESI-QTOF-MS". International Journal of Molecular Sciences. 15 (11): 20382–20402. doi:10.3390/ijms151120382. PMC 4264173. PMID 25383680.
  8. ^ Anwar F, Latif S, Ashraf M, Gilani AH (January 2007). "Moringa oleifera: a food plant with multiple medicinal uses". Phytotherapy Research. 21 (1): 17–25. doi:10.1002/ptr.2023. PMID 17089328.
  9. ^ DuPont MS, Day AJ, Bennett RN, Mellon FA, Kroon PA (June 2004). "Absorption of kaempferol from endive, a source of kaempferol-3-glucuronide, in humans". European Journal of Clinical Nutrition. 58 (6): 947–954. doi:10.1038/sj.ejcn.1601916. PMID 15164116. S2CID 25720976.
  10. ^ a b c d e f g h i j k l m n o p q r s t "USDA Database for the Flavonoid Content of Selected Foods, Release 3" (PDF). U.S. Department of Agriculture. 2011.
  11. ^ Vogt T (January 2010). "Phenylpropanoid biosynthesis". Molecular Plant. 3 (1): 2–20. doi:10.1093/mp/ssp106. PMID 20035037.
  12. ^ Flamini R, Mattivi F, De Rosso M, Arapitsas P, Bavaresco L (September 2013). "Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols". International Journal of Molecular Sciences. 14 (10): 19651–19669. doi:10.3390/ijms141019651. PMC 3821578. PMID 24084717.

External links[edit]

Leave a Reply