Trichome

Content deleted Content added
216.227.51.208 (talk)
Replaced content with 'I DELETED UR SHIT BITCHEZ HAAA HAAA HAAA HAAA'
m Reverted edits by 216.227.51.208 to last version by BenRG (HG)
Line 1: Line 1:
[[Image:Casimir plates.svg|thumb|right|300px|Casimir forces on parallel plates.]]
I DELETED UR SHIT BITCHEZ HAAA HAAA HAAA HAAA
[[Image:Casimir plates bubbles.svg|thumb|right|300px|Casimir forces on parallel plates.]]
In [[physics]], the '''Casimir effect''' and the '''Casimir-Polder force''' are physical [[force (physics)|forces]] arising from a ''[[Quantum field theory|quantized field]]''. The typical example is of two [[electric charge|uncharged]] metallic plates in a [[vacuum]], placed a few micrometers apart, without any external [[electromagnetic field]]. In a ''[[Classical electromagnetism|classical]]'' description, the lack of an external field also means that there is no field between the plates, and no force would be measured between them. When this field is instead studied using [[quantum electrodynamics]], it is seen that the plates do affect the ''[[virtual particle|virtual]] [[photon]]s'' which constitute the field, and generate a net force<ref>[http://focus.aps.org/story/v2/st28 The Force of Empty Space] on Physical Review Focus</ref>—either an attraction or a repulsion depending on the specific arrangement of the two plates. This force has been measured, and is a striking example of an effect purely due to ''[[Canonical quantization|second quantization]]''.
<ref>A. Lambrecht, [http://physicsweb.org/articles/world/15/9/6 The Casimir effect: a force from nothing], ''Physics World'', September 2002.</ref> <ref>[http://www.aip.org/pnu/1996/split/pnu300-3.htm American Institute of Physics News Note 1996]</ref> (However, the treatment of boundary conditions in these calculations has led to some controversy.<ref>[http://cua.mit.edu/8.422/Jaffe2005_Casimir.pdf RL Jaffe ''Casimir effect and the quantum vacuum'']</ref>)

[[Netherlands|Dutch]] [[physicist]]s [[Hendrik Casimir|Hendrik B. G. Casimir]] and
[[Dirk Polder]] first proposed the existence of the force and formulated an experiment to detect it in 1948 while participating in research at [[Philips]] Research Labs. The classic form of the experiment, described above, successfully demonstrated the force to within 15% of the value predicted by the theory.<ref>[http://apod.nasa.gov/apod/ap061217.html Photo of ball attracted to a plate by Casimir effect]</ref>

Because the strength of the force falls off rapidly with distance, it is only measurable when the distance between the objects is extremely small. On a submicrometre scale, this force becomes so strong that it becomes the dominant force between uncharged conductors. In fact, at separations of 10 nm—about 100 times the typical size of an atom—the Casimir effect produces the equivalent of 1 [[atmosphere (unit)|atmosphere]] of pressure (101.3 kPa), the precise value depending on surface geometry and other factors [http://physicsworld.com/cws/article/print/9747].

Although the Casimir effect can be expressed in terms of [[virtual particle]]s interacting with the objects, it is best described and more easily calculated in terms of the [[zero-point energy]] of a [[Quantum field theory|quantized field]] in the intervening space between the objects.
In modern [[theoretical physics]], the Casimir effect plays an important role in the [[nucleon#Models of the nucleon|chiral bag model]] of the [[nucleon]]; and in [[applied physics]], it is becoming increasingly important in the development of the ever-smaller, miniaturised components of emerging [[microtechnologies]] and [[nanotechnologies]].

==Overview==
The Casimir effect can be understood by the idea that the presence of conducting metals and [[dielectric]]s alter the [[vacuum expectation value]] of the energy of the second quantized [[electromagnetic field]]. Since the value of this energy depends on the shapes and positions of the conductors and dielectrics, the Casimir effect manifests itself as a force between such objects.

==Vacuum energy==<!-- This section is linked from [[Faster-than-light]] -->
{{main|Vacuum energy}}
The Casimir effect is an outcome of [[quantum field theory]], which states that all of the various fundamental [[field (physics)|fields]], such as the [[electromagnetic field]], must be quantized at each and every point in space. In a simplified view, a "field" in physics may be envisioned as if space were filled with interconnected vibrating balls and springs, and the strength of the field can be visualized as the displacement of a ball from its rest position. Vibrations in this field propagate and are governed by the appropriate [[wave equation]] for the particular field in question. The [[second quantization]] of quantum field theory requires that each such ball-spring combination be quantized, that is, that the strength of the field be quantized at each point in space. Canonically, the field at each point in space is a [[Harmonic oscillator|simple harmonic oscillator]], and its quantization places a [[quantum harmonic oscillator]] at each point. Excitations of the field correspond to the [[elementary particle]]s of [[particle physics]]. However, even the [[vacuum]] has a vastly complex structure. All calculations of quantum field theory must be made in relation to this model of the vacuum.

The vacuum has, implicitly, all of the properties that a particle may have: [[spin (physics)|spin]], or [[polarization]] in the case of [[light]], [[energy]], and so on. On average, all of these properties cancel out: the vacuum is, after all, "empty" in this sense. One important exception is the [[vacuum energy]] or the [[vacuum expectation value]] of the energy. The quantization of a simple harmonic oscillator states that the lowest possible energy or [[zero-point energy]] that such an oscillator may have is

:<math>{E} = \begin{matrix} \frac{1}{2} \end{matrix} \hbar \omega \ .</math>

Summing over all possible oscillators at all points in space gives an infinite quantity. To remove this infinity, one may argue that only differences in energy are physically measurable; this argument is the underpinning of the theory of [[renormalization]]. In all practical calculations, this is how the infinity is always handled. In a deeper sense, however, renormalization is unsatisfying, and the removal of this infinity presents a challenge in the search for a [[Theory of Everything]]. Currently there is no compelling explanation for how this infinity should be treated as essentially zero; a non-zero value is essentially the [[cosmological constant]] and any large value causes trouble in [[physical cosmology|cosmology]].

==The Casimir effect==
Casimir's observation was that the [[Canonical quantization|second-quantized]] quantum electromagnetic field, in the presence of bulk bodies such as metals or [[dielectric]]s, must obey the same [[Boundary value problem|boundary condition]]s that the classical electromagnetic field must obey. In particular, this affects the calculation of the vacuum energy in the presence of a [[Electrical conductor|conductor]] or dielectric.

Consider, for example, the calculation of the vacuum expectation value of the electromagnetic field inside a metal cavity, such as, for example, a [[Cavity magnetron|radar cavity]] or a [[microwave]] [[waveguide]]. In this case, the correct way to find the zero point energy of the field is to sum the energies of the [[standing wave]]s of the cavity. To each and every possible standing wave corresponds an energy; say the energy of the ''n''th standing wave is <math>E_n</math>. The vacuum expectation value of the energy of the electromagnetic field in the cavity is then

:<math>\langle E \rangle = \frac{1}{2} \sum_n E_n</math>

with the sum running over all possible values of ''n'' enumerating the standing waves. The factor of 1/2 corresponds to the fact that the zero-point energies are being summed (it is the same 1/2 as appears in the equation <math>E=\hbar \omega/2</math>). Written in this way, this sum is clearly divergent; however, it can be used to create finite expressions.

In particular, one may ask how the zero point energy depends on the shape ''s'' of the cavity. Each energy level <math>E_n</math> depends on the shape, and so one should write <math>E_n(s)</math> for the energy level, and <math>\langle E(s) \rangle</math> for the vacuum expectation value. At this point comes an important observation: the force at point ''p'' on the wall of the cavity is equal to the change in the vacuum energy if the shape ''s'' of the wall is perturbed a little bit, say by <math>\delta s</math>, at point ''p''. That is, one has

:<math>F(p) = - \left. \frac{\delta \langle E(s) \rangle} {\delta s} \right\vert_p\,</math>

This value is finite in many practical calculations.<ref>For a brief summary, see the introduction in [http://arxiv.org/abs/0708.2240v1 R. Passante, S. Spagnolo: ''Casimir-Polder interatomic potential between two atoms at finite temperature and in the presence of boundary conditions'']</ref>

==Casimir's calculation==
In the original calculation done by Casimir, he considered the space between a pair of conducting metal plates a distance ''a'' apart. In this case, the standing waves are particularly easy to calculate, since the transverse component of the electric field and the normal component of the magnetic field must vanish on the surface of a conductor. Assuming the parallel plates lie in the x-y plane, the standing waves are

:<math>\psi_n(x,y,z,t) = e^{-i\omega_nt} e^{ik_xx+ik_yy} \sin \left( k_n z \right)</math>

where <math>\psi</math> stands for the electric component of the electromagnetic field, and, for brevity, the [[polarization]] and the magnetic components are ignored here. Here, <math>k_x</math> and <math>k_y</math> are the [[wave vector]]s in directions parallel to the plates, and

:<math>k_n = \frac{n\pi}{a}</math>

is the wave-vector perpendicular to the plates. Here, ''n'' is an integer, resulting from the requirement that ψ vanish on the metal plates. The energy of this wave is

:<math>\omega_n = c \sqrt{{k_x}^2 + {k_y}^2 + \frac{n^2\pi^2}{a^2}}</math>

where ''c'' is the [[speed of light]]. The vacuum energy is then the sum over all possible excitation modes

:<math>\langle E \rangle = \frac{\hbar}{2} \cdot 2
\int \frac{dk_x dk_y}{(2\pi)^2} \sum_{n=1}^\infty A\omega_n </math>

where ''A'' is the area of the metal plates, and a factor of 2 is introduced for the two possible polarizations of the wave. This expression is clearly infinite, and to proceed with the calculation, it is convenient to introduce a [[regularization (physics)|regulator]] (discussed in greater detail below). The regulator will serve to make the expression finite, and in the end will be removed. The [[Zeta function regularization|zeta-regulated]] version of the energy per unit-area of the plate is

:<math>\frac{\langle E(s) \rangle}{A} = \hbar
\int \frac{dk_x dk_y}{(2\pi)^2} \sum_{n=1}^\infty \omega_n
\vert \omega_n\vert^{-s}</math>

In the end, the limit <math>s\to 0</math> is to be taken. Here ''s'' is just a [[complex number]], not to be confused with the shape discussed previously. This integral/sum is finite for ''s'' [[real number|real]] and larger than 3. The sum has a [[pole (complex analysis)|pole]] at ''s''=3, but may be [[analytic continuation|analytically continued]] to ''s''=0, where the expression is finite. Expanding this, one gets

:<math>\frac{\langle E(s) \rangle}{A} =
\frac{\hbar c^{1-s}}{4\pi^2} \sum_n \int_0^\infty 2\pi qdq
\left \vert q^2 + \frac{\pi^2 n^2}{a^2} \right\vert^{(1-s)/2}</math>

where [[Polar coordinate system|polar coordinates]] <math>q^2 = k_x^2+k_y^2</math> were introduced to turn the [[Multiple integral|double integral]] into a single integral. The <math>q</math> in front is the Jacobian, and the <math>2\pi</math> comes from the angular integration. The integral is easily performed, resulting in

:<math>\frac{\langle E(s) \rangle}{A} =
-\frac {\hbar c^{1-s} \pi^{2-s}}{2a^{3-s}} \frac{1}{3-s}
\sum_n \vert n\vert ^{3-s}</math>

The sum may be understood to be the [[Riemann zeta function]], and so one has
:<math>\frac{\langle E \rangle}{A} =
\lim_{s\to 0} \frac{\langle E(s) \rangle}{A} =
-\frac {\hbar c \pi^{2}}{6a^{3}} \zeta (-3)</math>

But <math>\zeta(-3)=1/120</math> and so one obtains

:<math>\frac{\langle E \rangle}{A} =
\frac {-\hbar c \pi^{2}}{3 \cdot 240 a^{3}}</math>

The Casimir force per unit area <math>F_c / A</math> for idealized, perfectly conducting plates with vacuum between them is

:<math>{F_c \over A} = -
\frac{d}{da} \frac{\langle E \rangle}{A} =
-\frac {\hbar c \pi^2} {240 a^4}</math>

where

:<math>\hbar</math> (hbar, ℏ) is the [[reduced Planck constant]],
:<math>c</math> is the [[speed of light]],
:<math>a</math> is the [[distance]] between the two plates.

The force is negative, indicating that the force is attractive: by moving the two plates closer together, the energy is lowered. The presence of <math>\hbar</math> shows that the Casimir force per unit area <math>F_c / A</math> is very small, and that furthermore, the force is inherently of quantum-mechanical origin.

===More recent theory===
A very complete analysis of the Casimir effect at short distances is based upon a detailed analysis of the [[van der Waals force]] by [[Evgeny Lifshitz|Lifshitz]].<ref>[http://www.turpion.org/php/paper.phtml?journal_id=pu&paper_id=3330 IE Dzyaloshinskii, EM Lifshitz, LP Pitaevskii: ''General theory of van der Waals' forces'']</ref><ref>[http://arxiv.org/abs/cond-mat/0408348v1 Dzyaloshinskii IE & Kats EI ''Casimir forces in modulated systems'']</ref> Using this approach, complications of the bounding surfaces, such as the modifications to the Casimir force due to finite conductivity can be calculated numerically using the tabulated complex dielectric functions of the bounding materials. In addition to these factors, complications arise due to surface roughness of the boundary and to geometry effects such as degree of parallelism of bounding plates.

For boundaries at large separations, retardation effects give rise to a long-range interaction. For the case of two parallel plates composed of ideal metals in vacuum, the results reduce to Casimir’s.<ref>[http://arxiv.org/abs/0706.1184v2 F. Intravaia, C. Henkel & A. Lambrecht: ''The role of surface plasmons in the Casimir effect'']</ref>

==Measurement==

One of the first experimental tests was conducted by Marcus Sparnaay at Philips in Eindhoven, in 1958, in a delicate and difficult experiment with parallel plates, obtaining results not in contradiction with the Casimir theory <ref> M.J. Sparnaay, "Attractive forces between flat plates", ''Nature'' '''180''', 334 (1957)</ref> <ref>M.J. Sparnaay, "Measurement of attractive forces between flat plates", ''Physica'' '''24''', 751 (1958)</ref>, but with large experimental errors.

The Casimir effect was measured more accurately in 1997 by Steve K. Lamoreaux of [[Los Alamos National Laboratory]] <ref> S. K. Lamoreaux, "[http://link.aps.org/abstract/PRL/v78/p5 Demonstration of the Casimir Force in the 0.6 to 6 µm Range]", ''Phys. Rev. Lett.'' '''78''', 5&ndash;8 (1997)</ref> and by Umar Mohideen and Anushree Roy of the [[University of California at Riverside]] <ref> U. Mohideen and Anushree Roy, "[http://link.aps.org/doi/10.1103/PhysRevLett.81.4549 Precision Measurement of the Casimir Force from 0.1 to 0.9 µm]", ''Phys. Rev. Lett.'' '''81''', 004549 (1997)</ref>.
In practice, rather than using two parallel plates, which would require phenomenally accurate alignment to ensure they were parallel, the experiments use one plate that is flat and another plate that is a part of a [[sphere]] with a large [[radius]]. In 2001, a group at the [[University of Padua]] finally succeeded in measuring the Casimir force between parallel plates using microresonators <ref>G. Bressi, G. Carugno, R. Onofrio, G. Ruoso, "[http://link.aps.org/abstract/PRL/v88/e041804 Measurement of the Casimir force between Parallel Metallic Surfaces]", ''Phys. Rev. Lett. '' '''88''' 041804 (2002)</ref>.

==Regularization==
In order to be able to perform calculations in the general case, it is convenient to introduce a [[regularization (physics)|regulator]] in the summations. This is an artificial device, used to make the sums finite so that they can be more easily manipulated, followed by the taking of a limit so as to remove the regulator.

The [[heat kernel regularization|heat kernel]] or [[exponential]]ly regulated sum is
:<math>\langle E(t) \rangle = \frac{1}{2} \sum_n \hbar |\omega_n|
\exp (-t|\omega_n|)</math>

where the limit <math>t\to 0^+</math> is taken in the end. The divergence of the sum is typically manifested as

:<math>\langle E(t) \rangle = \frac{C}{t^3} + \textrm{finite}\,</math>

for three-dimensional cavities. The infinite part of the sum is associated with the bulk constant ''C'' which ''does not'' depend on the shape of the cavity. The interesting part of the sum is the finite part, which is shape-dependent. The [[Gaussian function|Gaussian]] regulator

:<math>\langle E(t) \rangle = \frac{1}{2} \sum_n \hbar |\omega_n|
\exp (-t^2|\omega_n|^2)</math>

is better suited to numerical calculations because of its superior convergence properties, but is more difficult to use in theoretical calculations. Other, suitably smooth, regulators may be used as well. The [[zeta function regulator]]

:<math>\langle E(s) \rangle = \frac{1}{2} \sum_n \hbar |\omega_n| |\omega_n|^{-s}</math>

is completely unsuited for numerical calculations, but is quite useful in theoretical calculations. In particular, divergences show up as poles in the [[complex plane|complex ''s'' plane]], with the bulk divergence at ''s''=4. This sum may be [[analytic continuation|analytically continued]] past this pole, to obtain a finite part at ''s''=0.

Not every cavity configuration necessarily leads to a finite part (the lack of a pole at ''s''=0) or shape-independent infinite parts. In this case, it should be understood that additional physics has to be taken into account. In particular, at extremely large frequencies (above the [[plasma frequency]]), metals become transparent to [[photon]]s (such as [[x-ray]]s), and dielectrics show a frequency-dependent cutoff as well. This frequency dependence acts as a natural regulator. There are a variety of bulk effects in [[solid state physics]], mathematically very similar to the Casimir effect, where the [[cutoff frequency]] comes into explicit play to keep expressions finite. (These are discussed in greater detail in ''Landau and Lifshitz'', "Theory of Continuous Media".)

==Generalities==
The Casimir effect can also be computed using the mathematical mechanisms of [[functional integral]]s of quantum field theory, although such calculations are considerably more abstract, and thus difficult to comprehend. In addition, they can be carried out only for the simplest of geometries. However, the formalism of quantum field theory makes it clear that the vacuum expectation value summations are in a certain sense summations over so-called "[[virtual particle]]s".

More interesting is the understanding that the sums over the energies of standing waves should be formally understood as sums over the [[eigenvalue]]s of a [[Hamiltonian]]. This allows atomic and molecular effects, such as the [[van der Waals force]], to be understood as a variation on the theme of the Casimir effect. Thus one considers the Hamiltonian of a system as a function of the arrangement of objects, such as atoms, in [[configuration space]]. The change in the zero-point energy as a function of changes of the configuration can be understood to result in forces acting between the objects.

In the [[chiral bag model]] of the [[nucleon]], the Casimir energy plays an important role in showing the mass of the nucleon is independent of the bag radius. In addition, the [[spectral asymmetry]] is interpreted as a non-zero vacuum expectation value of the [[baryon number]], cancelling the [[topological winding number]] of the [[pion]] field surrounding the nucleon.

==Casimir effect and wormholes==

[[Exotic matter]] with negative energy density is required to stabilize a [[wormhole]].<ref>M. Visser (1995) ''Lorentzian Wormholes: from Einstein to Hawking'', AIP Press, Woodbury NY, ISBN 1-56396-394-9</ref> Morris, [[Kip Thorne| Thorne]] and Yurtsever<ref>M. Morris, K. Thorne, and U. Yurtsever, [http://prola.aps.org/abstract/PRL/v61/i13/p1446_1 Wormholes, Time Machines, and the Weak Energy Condition], ''[[Physical Review]], 61'', 13, September 1988, pp. 1446 - 1449</ref> pointed out that the quantum mechanics of the Casimir effect can be used to produce a locally mass-negative region of space-time, and suggested that negative effect could be used to stabilize a wormhole to allow [[faster than light travel]]. This was used in the novel Warp Speed by [[Travis S. Taylor]].

==Analogies==
A similar analysis can be used to explain [[Hawking radiation]] that causes the slow "[[evaporation]]" of [[black holes]] (although this is generally visualised as the escape of one particle from a [[virtual particle]]-[[antiparticle]] pair, the other particle having been captured by the black hole).

==Repulsive Forces==
There are few instances wherein the Casimir effect can give rise to repulsive forces between uncharged objects. In a seminal paper, [[Evgeny Lifshitz]] showed (theoretically) that in certain circumstances (most commonly involving liquids), repulsive forces can arise. This has sparked interest in applications of the Casimir effect toward the development of levitating devices. Other scientists have also suggested the use of [[gain media]] to achieve a similar levitation effect<ref>http://www.telegraph.co.uk/news/1559579/Physicists-have-%27solved%27-mystery-of-levitation.html</ref>, though this is controversial because these materials seem to violate fundamental causality constraints and the requirement of thermodynamic equilibrium. An experimental demonstration of the Casimir-based levitation is still yet to be made, though recent experiments involving fluids have demonstrated repulsive forces<ref>http://www.economist.com/science/displaystory.cfm?story_id=11402849</ref>

==Applications==
It has been suggested that the Casimir forces have application in nanotechnology, in particular silicon integrated circuit technology based micro- and nanoelectromechanical systems, and so-called Casimir oscillators.<ref name=Capasso2007>{{cite journal
| author = Capasso, F.
| year = 2007
| title = Casimir forces and quantum electrodynamical torques: physics and nanomechanics
| coauthors = J.N. Munday, D. Iannuzzi, and H.B. Chan
| journal = IEEE J. Sel. Top. Quantum Electron
| volume = 13
| pages = 400
| url=https://www.editorial.seas.harvard.edu/capasso/publications/Capasso_STJQE_13_400_2007.pdf
| accessdate = 2008-07-18
}}</ref>

==Technology==
''The Economist'', May 24th-30th, 2008, highlighted practical applications of the Casimir Effect. Casimir "stiction" which is the focus of this article affects the designs of the smallest computer chips. In addition, Casimir "repulsion," which occurs when a liquid between the plates promotes an electromagnetic repulsion force that might be useful in nanomechanics.

==Popular culture==
In relation to science fiction, although the nature of the effect has not been revealed yet, during an orientation video of the TV series ''[[Lost (TV series)|Lost]]'', a [[Dharma Initiative]] doctor (Dr. Edgar Halliwax<ref>[http://www.lostpedia.com/wiki/Marvin_Candle Pierre Chang - Lostpedia<!-- Bot generated title -->]</ref>) states that the island exhibits a "Casimir effect."<ref>[http://www.lostpedia.com/wiki/Orchid_Orientation_film ''Orchid Orientation film'']</ref> This may explain why the Island exhibits strange temporal qualities like time displacement from the rest of the world. In the final episode of its fourth season, the effect was elaborated on by the mention of a "pocket of negatively charged exotic matter" and an apparent occurrence of time travel.

==See also==
*[[Van der Waals force]]

==References==
{{reflist|2}}

==Further reading==
<!-- try to order from introductory to advanced -->
* Introductory
** [http://math.ucr.edu/home/baez/physics/Quantum/casimir.html Casimir effect description] from [[University of California, Riverside]]'s version of the [http://math.ucr.edu/home/baez/physics/index.html Usenet physics FAQ].
** A. Lambrecht, [http://physicsweb.org/articles/world/15/9/6 The Casimir effect: a force from nothing], ''Physics World'', September 2002.
** [http://antwrp.gsfc.nasa.gov/apod/ap061217.html Casimir effect] on Astronomy Picture of the Day
** [http://www.telegraph.co.uk/news/main.jhtml?xml=/news/2007/08/06/nlevitate106.xml Physicists have 'solved' mystery of levitation] Telegraph interviews Prof. Ulf Leonhardt and Dr Thomas Philbin
* Papers, books and lectures
** [[Hendrik Casimir|H. B. G. Casimir]], and [[Dirk Polder|D. Polder]], [http://prola.aps.org/abstract/PR/v73/i4/p360_1 "The Influence of Retardation on the London-van der Waals Forces"], ''Phys. Rev.'' '''73''', 360-372 (1948).
** [[Hendrik Casimir|H. B. G. Casimir]], [http://www.historyofscience.nl/search/detail.cfm?pubid=2642&view=image&startrow=1 "On the attraction between two perfectly conducting plates"] ''Proc. Kon. Nederland. Akad. Wetensch.'' '''B51''', 793 (1948)
** S. K. Lamoreaux, "[http://link.aps.org/abstract/PRL/v78/p5 Demonstration of the Casimir Force in the 0.6 to 6 µm Range]", ''Phys. Rev. Lett.'' '''78''', 5&ndash;8 (1997)
** M. Bordag, U. Mohideen, V.M. Mostepanenko, "[http://dx.doi.org/10.1016/S0370-1573(01)00015-1 New Developments in the Casimir Effect]", ''Phys. Rep.'' '''353''', 1&ndash;205 (2001), [http://arxiv.org/abs/quant-ph/0106045 arXiv]. ''(200+ page review paper.)''
**Kimball A.Milton: "The Casimir effect", World Scientific, Singapore 2001,ISBN 981-02-4397-9
** G. Bressi, G. Carugno, R. Onofrio, G. Ruoso, "[http://link.aps.org/abstract/PRL/v88/e041804 Measurement of the Casimir force between Parallel Metallic Surfaces]", ''Phys. Rev. Lett. '' '''88''' 041804 (2002)
** O. Kenneth, I. Klich, A. Mann and M. Revzen, ''Repulsive Casimir forces'', Department of Physics, Technion - Israel Institute of Technology, Haifa, February 2002
** J. D. Barrow, "[http://www.gresham.ac.uk/event.asp?PageId=4&EventId=258 Much ado about nothing]", (2005) Lecture at [[Gresham College]]. ''(Includes discussion of French naval analogy.)''
** {{cite book | first=John D. | last=Barrow | authorlink=John D. Barrow | year=2000 | title=The book of nothing : vacuums, voids, and the latest ideas about the origins of the universe | edition=1st American Ed. | publisher=Pantheon Books | location=New York | id=ISBN 0-09-928845-1 }} (Also includes discussion of French naval analogy.)
* Temperature dependence
** [http://www.nist.gov/public_affairs/newsfromnist_casimir-polder.htm Measurements Recast Usual View of Elusive Force] from [[NIST]]
** V.V. Nesterenko, G. Lambiase, G. Scarpetta, [http://arxiv.org/abs/hep-th/0503100 Calculation of the Casimir energy at zero and finite temperature: some recent results], arXiv:hep-th/0503100 v2 [[13 May]] [[2005]]

== External links ==
*[http://xstructure.inr.ac.ru/x-bin/theme3.py?level=3&index1=313011 Casimir effect article search] on arxiv.org
* G. Lang, [http://www.casimir.rl.ac.uk/default.htm The Casimir Force] web site, 2002

[[Category:Quantum field theory]]
[[Category:Physical phenomena]]
[[Category:Force]]

[[cs:Casimirův jev]]
[[de:Casimir-Effekt]]
[[es:Efecto Casimir]]
[[fr:Effet Casimir]]
[[is:Kasímír hrif]]
[[it:Effetto Casimir]]
[[he:אפקט קזימיר]]
[[nl:Casimireffect]]
[[ja:カシミール効果]]
[[pl:Efekt Casimira]]
[[pt:Efeito Casimir]]
[[ro:Efectul Casimir]]
[[ru:Эффект Казимира]]
[[sq:Efekti i Kazimirit]]
[[sl:Casimirjev pojav]]
[[fi:Casimirin ilmiö]]
[[tr:Casimir kuvveti]]
[[zh:喀希米爾效應]]

Revision as of 03:38, 18 September 2008

Casimir forces on parallel plates.
Casimir forces on parallel plates.

In physics, the Casimir effect and the Casimir-Polder force are physical forces arising from a quantized field. The typical example is of two uncharged metallic plates in a vacuum, placed a few micrometers apart, without any external electromagnetic field. In a classical description, the lack of an external field also means that there is no field between the plates, and no force would be measured between them. When this field is instead studied using quantum electrodynamics, it is seen that the plates do affect the virtual photons which constitute the field, and generate a net force[1]—either an attraction or a repulsion depending on the specific arrangement of the two plates. This force has been measured, and is a striking example of an effect purely due to second quantization. [2] [3] (However, the treatment of boundary conditions in these calculations has led to some controversy.[4])

Dutch physicists Hendrik B. G. Casimir and Dirk Polder first proposed the existence of the force and formulated an experiment to detect it in 1948 while participating in research at Philips Research Labs. The classic form of the experiment, described above, successfully demonstrated the force to within 15% of the value predicted by the theory.[5]

Because the strength of the force falls off rapidly with distance, it is only measurable when the distance between the objects is extremely small. On a submicrometre scale, this force becomes so strong that it becomes the dominant force between uncharged conductors. In fact, at separations of 10 nm—about 100 times the typical size of an atom—the Casimir effect produces the equivalent of 1 atmosphere of pressure (101.3 kPa), the precise value depending on surface geometry and other factors [1].

Although the Casimir effect can be expressed in terms of virtual particles interacting with the objects, it is best described and more easily calculated in terms of the zero-point energy of a quantized field in the intervening space between the objects. In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; and in applied physics, it is becoming increasingly important in the development of the ever-smaller, miniaturised components of emerging microtechnologies and nanotechnologies.

Overview

The Casimir effect can be understood by the idea that the presence of conducting metals and dielectrics alter the vacuum expectation value of the energy of the second quantized electromagnetic field. Since the value of this energy depends on the shapes and positions of the conductors and dielectrics, the Casimir effect manifests itself as a force between such objects.

Vacuum energy

The Casimir effect is an outcome of quantum field theory, which states that all of the various fundamental fields, such as the electromagnetic field, must be quantized at each and every point in space. In a simplified view, a "field" in physics may be envisioned as if space were filled with interconnected vibrating balls and springs, and the strength of the field can be visualized as the displacement of a ball from its rest position. Vibrations in this field propagate and are governed by the appropriate wave equation for the particular field in question. The second quantization of quantum field theory requires that each such ball-spring combination be quantized, that is, that the strength of the field be quantized at each point in space. Canonically, the field at each point in space is a simple harmonic oscillator, and its quantization places a quantum harmonic oscillator at each point. Excitations of the field correspond to the elementary particles of particle physics. However, even the vacuum has a vastly complex structure. All calculations of quantum field theory must be made in relation to this model of the vacuum.

The vacuum has, implicitly, all of the properties that a particle may have: spin, or polarization in the case of light, energy, and so on. On average, all of these properties cancel out: the vacuum is, after all, "empty" in this sense. One important exception is the vacuum energy or the vacuum expectation value of the energy. The quantization of a simple harmonic oscillator states that the lowest possible energy or zero-point energy that such an oscillator may have is

Summing over all possible oscillators at all points in space gives an infinite quantity. To remove this infinity, one may argue that only differences in energy are physically measurable; this argument is the underpinning of the theory of renormalization. In all practical calculations, this is how the infinity is always handled. In a deeper sense, however, renormalization is unsatisfying, and the removal of this infinity presents a challenge in the search for a Theory of Everything. Currently there is no compelling explanation for how this infinity should be treated as essentially zero; a non-zero value is essentially the cosmological constant and any large value causes trouble in cosmology.

The Casimir effect

Casimir's observation was that the second-quantized quantum electromagnetic field, in the presence of bulk bodies such as metals or dielectrics, must obey the same boundary conditions that the classical electromagnetic field must obey. In particular, this affects the calculation of the vacuum energy in the presence of a conductor or dielectric.

Consider, for example, the calculation of the vacuum expectation value of the electromagnetic field inside a metal cavity, such as, for example, a radar cavity or a microwave waveguide. In this case, the correct way to find the zero point energy of the field is to sum the energies of the standing waves of the cavity. To each and every possible standing wave corresponds an energy; say the energy of the nth standing wave is . The vacuum expectation value of the energy of the electromagnetic field in the cavity is then

with the sum running over all possible values of n enumerating the standing waves. The factor of 1/2 corresponds to the fact that the zero-point energies are being summed (it is the same 1/2 as appears in the equation ). Written in this way, this sum is clearly divergent; however, it can be used to create finite expressions.

In particular, one may ask how the zero point energy depends on the shape s of the cavity. Each energy level depends on the shape, and so one should write for the energy level, and for the vacuum expectation value. At this point comes an important observation: the force at point p on the wall of the cavity is equal to the change in the vacuum energy if the shape s of the wall is perturbed a little bit, say by , at point p. That is, one has

This value is finite in many practical calculations.[6]

Casimir's calculation

In the original calculation done by Casimir, he considered the space between a pair of conducting metal plates a distance a apart. In this case, the standing waves are particularly easy to calculate, since the transverse component of the electric field and the normal component of the magnetic field must vanish on the surface of a conductor. Assuming the parallel plates lie in the x-y plane, the standing waves are

where stands for the electric component of the electromagnetic field, and, for brevity, the polarization and the magnetic components are ignored here. Here, and are the wave vectors in directions parallel to the plates, and

is the wave-vector perpendicular to the plates. Here, n is an integer, resulting from the requirement that ψ vanish on the metal plates. The energy of this wave is

where c is the speed of light. The vacuum energy is then the sum over all possible excitation modes

where A is the area of the metal plates, and a factor of 2 is introduced for the two possible polarizations of the wave. This expression is clearly infinite, and to proceed with the calculation, it is convenient to introduce a regulator (discussed in greater detail below). The regulator will serve to make the expression finite, and in the end will be removed. The zeta-regulated version of the energy per unit-area of the plate is

In the end, the limit is to be taken. Here s is just a complex number, not to be confused with the shape discussed previously. This integral/sum is finite for s real and larger than 3. The sum has a pole at s=3, but may be analytically continued to s=0, where the expression is finite. Expanding this, one gets

where polar coordinates were introduced to turn the double integral into a single integral. The in front is the Jacobian, and the comes from the angular integration. The integral is easily performed, resulting in

The sum may be understood to be the Riemann zeta function, and so one has

But and so one obtains

The Casimir force per unit area for idealized, perfectly conducting plates with vacuum between them is

where

(hbar, ℏ) is the reduced Planck constant,
is the speed of light,
is the distance between the two plates.

The force is negative, indicating that the force is attractive: by moving the two plates closer together, the energy is lowered. The presence of shows that the Casimir force per unit area is very small, and that furthermore, the force is inherently of quantum-mechanical origin.

More recent theory

A very complete analysis of the Casimir effect at short distances is based upon a detailed analysis of the van der Waals force by Lifshitz.[7][8] Using this approach, complications of the bounding surfaces, such as the modifications to the Casimir force due to finite conductivity can be calculated numerically using the tabulated complex dielectric functions of the bounding materials. In addition to these factors, complications arise due to surface roughness of the boundary and to geometry effects such as degree of parallelism of bounding plates.

For boundaries at large separations, retardation effects give rise to a long-range interaction. For the case of two parallel plates composed of ideal metals in vacuum, the results reduce to Casimir’s.[9]

Measurement

One of the first experimental tests was conducted by Marcus Sparnaay at Philips in Eindhoven, in 1958, in a delicate and difficult experiment with parallel plates, obtaining results not in contradiction with the Casimir theory [10] [11], but with large experimental errors.

The Casimir effect was measured more accurately in 1997 by Steve K. Lamoreaux of Los Alamos National Laboratory [12] and by Umar Mohideen and Anushree Roy of the University of California at Riverside [13]. In practice, rather than using two parallel plates, which would require phenomenally accurate alignment to ensure they were parallel, the experiments use one plate that is flat and another plate that is a part of a sphere with a large radius. In 2001, a group at the University of Padua finally succeeded in measuring the Casimir force between parallel plates using microresonators [14].

Regularization

In order to be able to perform calculations in the general case, it is convenient to introduce a regulator in the summations. This is an artificial device, used to make the sums finite so that they can be more easily manipulated, followed by the taking of a limit so as to remove the regulator.

The heat kernel or exponentially regulated sum is

where the limit is taken in the end. The divergence of the sum is typically manifested as

for three-dimensional cavities. The infinite part of the sum is associated with the bulk constant C which does not depend on the shape of the cavity. The interesting part of the sum is the finite part, which is shape-dependent. The Gaussian regulator

is better suited to numerical calculations because of its superior convergence properties, but is more difficult to use in theoretical calculations. Other, suitably smooth, regulators may be used as well. The zeta function regulator

is completely unsuited for numerical calculations, but is quite useful in theoretical calculations. In particular, divergences show up as poles in the complex s plane, with the bulk divergence at s=4. This sum may be analytically continued past this pole, to obtain a finite part at s=0.

Not every cavity configuration necessarily leads to a finite part (the lack of a pole at s=0) or shape-independent infinite parts. In this case, it should be understood that additional physics has to be taken into account. In particular, at extremely large frequencies (above the plasma frequency), metals become transparent to photons (such as x-rays), and dielectrics show a frequency-dependent cutoff as well. This frequency dependence acts as a natural regulator. There are a variety of bulk effects in solid state physics, mathematically very similar to the Casimir effect, where the cutoff frequency comes into explicit play to keep expressions finite. (These are discussed in greater detail in Landau and Lifshitz, "Theory of Continuous Media".)

Generalities

The Casimir effect can also be computed using the mathematical mechanisms of functional integrals of quantum field theory, although such calculations are considerably more abstract, and thus difficult to comprehend. In addition, they can be carried out only for the simplest of geometries. However, the formalism of quantum field theory makes it clear that the vacuum expectation value summations are in a certain sense summations over so-called "virtual particles".

More interesting is the understanding that the sums over the energies of standing waves should be formally understood as sums over the eigenvalues of a Hamiltonian. This allows atomic and molecular effects, such as the van der Waals force, to be understood as a variation on the theme of the Casimir effect. Thus one considers the Hamiltonian of a system as a function of the arrangement of objects, such as atoms, in configuration space. The change in the zero-point energy as a function of changes of the configuration can be understood to result in forces acting between the objects.

In the chiral bag model of the nucleon, the Casimir energy plays an important role in showing the mass of the nucleon is independent of the bag radius. In addition, the spectral asymmetry is interpreted as a non-zero vacuum expectation value of the baryon number, cancelling the topological winding number of the pion field surrounding the nucleon.

Casimir effect and wormholes

Exotic matter with negative energy density is required to stabilize a wormhole.[15] Morris, Thorne and Yurtsever[16] pointed out that the quantum mechanics of the Casimir effect can be used to produce a locally mass-negative region of space-time, and suggested that negative effect could be used to stabilize a wormhole to allow faster than light travel. This was used in the novel Warp Speed by Travis S. Taylor.

Analogies

A similar analysis can be used to explain Hawking radiation that causes the slow "evaporation" of black holes (although this is generally visualised as the escape of one particle from a virtual particle-antiparticle pair, the other particle having been captured by the black hole).

Repulsive Forces

There are few instances wherein the Casimir effect can give rise to repulsive forces between uncharged objects. In a seminal paper, Evgeny Lifshitz showed (theoretically) that in certain circumstances (most commonly involving liquids), repulsive forces can arise. This has sparked interest in applications of the Casimir effect toward the development of levitating devices. Other scientists have also suggested the use of gain media to achieve a similar levitation effect[17], though this is controversial because these materials seem to violate fundamental causality constraints and the requirement of thermodynamic equilibrium. An experimental demonstration of the Casimir-based levitation is still yet to be made, though recent experiments involving fluids have demonstrated repulsive forces[18]

Applications

It has been suggested that the Casimir forces have application in nanotechnology, in particular silicon integrated circuit technology based micro- and nanoelectromechanical systems, and so-called Casimir oscillators.[19]

Technology

The Economist, May 24th-30th, 2008, highlighted practical applications of the Casimir Effect. Casimir "stiction" which is the focus of this article affects the designs of the smallest computer chips. In addition, Casimir "repulsion," which occurs when a liquid between the plates promotes an electromagnetic repulsion force that might be useful in nanomechanics.

Popular culture

In relation to science fiction, although the nature of the effect has not been revealed yet, during an orientation video of the TV series Lost, a Dharma Initiative doctor (Dr. Edgar Halliwax[20]) states that the island exhibits a "Casimir effect."[21] This may explain why the Island exhibits strange temporal qualities like time displacement from the rest of the world. In the final episode of its fourth season, the effect was elaborated on by the mention of a "pocket of negatively charged exotic matter" and an apparent occurrence of time travel.

See also

References

  1. ^ The Force of Empty Space on Physical Review Focus
  2. ^ A. Lambrecht, The Casimir effect: a force from nothing, Physics World, September 2002.
  3. ^ American Institute of Physics News Note 1996
  4. ^ RL Jaffe Casimir effect and the quantum vacuum
  5. ^ Photo of ball attracted to a plate by Casimir effect
  6. ^ For a brief summary, see the introduction in R. Passante, S. Spagnolo: Casimir-Polder interatomic potential between two atoms at finite temperature and in the presence of boundary conditions
  7. ^ IE Dzyaloshinskii, EM Lifshitz, LP Pitaevskii: General theory of van der Waals' forces
  8. ^ Dzyaloshinskii IE & Kats EI Casimir forces in modulated systems
  9. ^ F. Intravaia, C. Henkel & A. Lambrecht: The role of surface plasmons in the Casimir effect
  10. ^ M.J. Sparnaay, "Attractive forces between flat plates", Nature 180, 334 (1957)
  11. ^ M.J. Sparnaay, "Measurement of attractive forces between flat plates", Physica 24, 751 (1958)
  12. ^ S. K. Lamoreaux, "Demonstration of the Casimir Force in the 0.6 to 6 µm Range", Phys. Rev. Lett. 78, 5–8 (1997)
  13. ^ U. Mohideen and Anushree Roy, "Precision Measurement of the Casimir Force from 0.1 to 0.9 µm", Phys. Rev. Lett. 81, 004549 (1997)
  14. ^ G. Bressi, G. Carugno, R. Onofrio, G. Ruoso, "Measurement of the Casimir force between Parallel Metallic Surfaces", Phys. Rev. Lett. 88 041804 (2002)
  15. ^ M. Visser (1995) Lorentzian Wormholes: from Einstein to Hawking, AIP Press, Woodbury NY, ISBN 1-56396-394-9
  16. ^ M. Morris, K. Thorne, and U. Yurtsever, Wormholes, Time Machines, and the Weak Energy Condition, Physical Review, 61, 13, September 1988, pp. 1446 - 1449
  17. ^ http://www.telegraph.co.uk/news/1559579/Physicists-have-%27solved%27-mystery-of-levitation.html
  18. ^ http://www.economist.com/science/displaystory.cfm?story_id=11402849
  19. ^ Capasso, F. (2007). "Casimir forces and quantum electrodynamical torques: physics and nanomechanics" (PDF). IEEE J. Sel. Top. Quantum Electron. 13: 400. Retrieved 2008-07-18. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  20. ^ Pierre Chang - Lostpedia
  21. ^ Orchid Orientation film

Further reading

External links

Leave a Reply