Trichome

Jupiter as seen by Voyager 1 in 1979. It is the largest planet having its surface resolved[1][2][3] and it is the largest planet in the Solar System.[4]

Below is a list of the largest exoplanets so far discovered, in terms of physical size, ordered by radius.

Limitations

[edit]

This list of extrasolar objects may and will change over time because of inconsistency between journals, different methods used to examine these objects and the already extremely hard task of discovering exoplanets, or any other extrasolar objects for that matter. These objects are not stars, and are quite small on a universal or even stellar scale. Then there is the fact that these objects might be brown dwarfs, sub-brown dwarfs, or not exist at all. Because of this, this list only cites the most certain measurements to date and is prone to change.

List

[edit]

The sizes are listed in units of Jupiter radii (RJ, 71 492 km). This list is designed to include all planets that are larger than 1.7 times the size of the largest planet in the Solar System, Jupiter. Some planets that are smaller than 1.7 RJ have been included for the sake of comparison.

Key (classification)
* Probably brown dwarfs (based on mass)
Probably sub-brown dwarfs (based on mass and location)
Probably planets (based on mass)
# Non-exoplanets reported for reference
Key (illustration)
Artist's impression
Artist's size comparison
Direct Imaging telescopic observation
Composite image of direct observations
Transiting telescopic observation
Illustration Exoplanet name Radius (RJ) Key Notes
Sun (Sol) 9.731 (R)
(695 700 km)
# The only star in the solar system where Earth orbits around.
Reported for reference.
Size limit for brown dwarfs 8[5]
Proplyd 133-353 7.82±0.81
(0.804 ± 0.083 R)[6][a]
A candidate rogue planet/sub-brown dwarf with a photoevaporating disk. It is located in the Orion Nebula Cluster. At an age younger than 500,000 years it is one of the youngest free-floating planetary-mass object candidates known.
More information about Proplyd 133-353 and estimates of its radius are available below:
[e]
V2384 Orionis A
(2M0535-05 A)
6.71±0.11
(0.690±0.011 R)[7]
# Eclipsing binary brown dwarf primary component, ~1 million years old, ~ 60 MJ dynamical mass estimate
Reported for reference.
V2384 Orionis B
(2M0535-05 B)
5.25±0.09
(0.540±0.009 R)[7]
# Eclipsing binary brown dwarf secondary component, ~1 million years old, ~ 38 MJ dynamical mass estimate
Reported for reference.
KPNO-Tau-4 4.1[8][9]
GQ Lupi b
(GQ Lup b)
3.7±0.7;[10]
2.65–3.3, 4.08–4.45;[11]
3.50+1.50
−1.03
;[12] 3.77;[13]
3.6±0.1[14]
* GQ Lupi b has a mass of 1 – 46 MJ; in the higher half of this range, it may be classified as a young brown dwarf. GQ Lup Ab / GQ Lup b / GQ Lup B should not be confused with the stellar mass companion GQ Lup C at about 2400 AU separation.
Most recently 20±10 MJ.[14]
HD 100546 b
(KR Muscae b)
3.4[15] * Initially reported 6.9+2.7
−2.9
RJ due to the diffuse dust and gas envelope or debris disk surrounding the planet,[16] making the planet candidate the largest exoplanet discovered by size, a 2017 study calculated HD 100546 b as a very highly reddened substellar object with a good-fit effective temperature of 2,630 K and a mass and radius of 25 MJ and 3.4 RJ, making it still one of the largest exoplanet candidates discovered by size.[15]
OTS 44 3.2 – 3.6[17] Very likely a brown dwarf[18] or sub-brown dwarf.[19] It is surrounded by a circumstellar disk of dust and particles of rock and ice. The currently preferred radius estimate is done by SED modelling including substellar object and disk model.[17]
2M J044144 b
(2MASS J0441+2301 Bb)
3.06[20][a] 9.8±1.8 MJ;[20] based on the mass ratio to its primary (2M J044144 A) it is not a planet according to the exoplanet working definition.[21] May be sub-brown dwarf.
Kapteyn's Star 2.832 ± 0.243[22] # The closest halo star / red subdwarf to the Solar System at the distance of 12.82 ly (3.93 pc). Also having the second-highest proper motion of any stars. Having an age of 11.5 +0.5
−1.5
Gyr.
Reported for reference.
DH Tauri b
(DH Tau b)
2.6±0.6;[10]
2.7±0.8;[23]
2.68;[24] 2.49[17][a]
11±MJ,[23] 14.2+2.4
−3.5
MJ,[25] 17±MJ,[26] 12±MJ.[10] DH Tau b has itself a companion candidate, an exomoon candidate of about MJ, referred to as DH Tau Bb. Its estimated orbital period is about 320 years.[27]
SR 12 (AB) c 2.38 +0.27
−0.32
[28]
14+7
−8
MJ,[29] 12 – 15 MJ,[30] 13±MJ,[28] is at the very edge of the deuterium burning limit.
TWA 29 2.222 +0.082
−0.081
[31]
6.6+5.2
−2.9
MJ[31]
Hot Jupiter limit 2.2[32] Theoretical limit for hot Jupiters close to a star, that are limited by tidal heating, resulting in 'runaway inflation'
CT Chamaeleontis b (CT Cha b) 2.2+0.81
−0.6
[33]
* 17±MJ; is likely a brown dwarf.
ROXs 42B b 2.10±0.35;[10]
1.9 – 2.4, 1.3 – 4.7;[34]
1.40[a] or 1.81[f] or 2.83±0.01;[35]
2.43±0.18 – 2.55±0.2[36]
9+6
−3
MJ;[37] 10±MJ;[38] 3.2 – 27 MJ;[35] 13±MJ[10]
PDS 70 b 2.09+0.23
−0.31
 – 2.72+0.15
−0.17
[39]
Possibly the largest known exoplanet.[32] Mass estimated at 3.2+3.3
−1.6
MJ, 7.9+4.9
−4.7
MJ, < 10 MJ (2 σ), <~ 15 MJ (total)[40]
HAT-P-67b 2.085+0.096
−0.071
[41]
0.34+0.25
−0.19
MJ; a very puffy Hot Jupiter. Currently the largest known planet with an accurately and precisely measured radius.[42]
XO-6b 2.07±0.22[43] 4.4 MJ; a very puffy Hot Jupiter
Cha 110913-773444 2.0 – 2.1[17] A rogue planet (Likely a sub-brown dwarf) that is surrounded by a protoplanetary disk. It is one of youngest free-floating substellar objects with 0.5–10 Myr. The currently preferred radius estimate is done by SED modelling including substellar object and disk model.[17]
CFHTWIR-Oph 90 2.00 +0.09
−0.12
;[28] 3[44][45]
Ditsö̀ (WASP-17b) 1.991±0.081[46] 0.486 MJ; has an extremely low density of 0.08 g/cm3.[47] Possibly largest exoplanet at the time of discovery.[48]
Kepler-435b 1.99±0.18[49]
HAT-P-32b 1.980±0.045,[50] 2.037±0.999[43] 0.941±0.166 MJ; a very puffy Hot Jupiter. Other estimates give 1.789±0.025 RJ.[51]
CFHTWIR-Oph 98 a 1.95 +0.11
−0.10
;[28] 2.14[44][52]
* Either a brown dwarf or sub-brown dwarf with a sub-brown dwarf/planet companion CFHTWIR-Oph 98 b.
WASP-12b 1.937±0.056[53] This planet is so close to its parent star that its tidal forces are distorting it into an egg-like shape. As of September 2017, it has been described as "black as asphalt", and as a "pitch black" hot Jupiter as it absorbs 94% of the starlight that reaches its surface. WASP-12b is suspected to have one exomoon due to a curve of change of shine of the planet observed regular variation of light.[54]
BD-14 3065 b 1.926±0.094[55]
KELT-19 Ab 1.91±0.11[56]
Dimidium
(51 Pegasi b)
1.9±0.3[57] First exoplanet to be discovered orbiting a main-sequence star. Prototype hot Jupiter.
KELT-9b 1.891+0.061
−0.055
[58]
Hottest confirmed exoplanet known, with a temperature of 4050±180 K.[59]
HAT-P-65b 1.89±0.13[60]
TOI-1518 b 1.875±0.053[50]
HAT-P-70b 1.87+0.15
−0.10
[50]
Tylos
(WASP-121b)
1.865±0.044[61] 1.157±0.070 MJ; First exoplanet found to contain water in an extrasolar planetary stratosphere, though doubts were raised by a reanalysis in 2020. Tylos is suspected to have exo-Io candidate due to the sodium being detected via absorption spectroscopy around the planet.[62]
HATS-23b 1.86+0.3
−0.4
[63]
CFHTWIR-Oph 98 b 1.86±0.05[50][52] May be a sub-brown dwarf.
KELT-8b 1.86+0.18
−0.16
[64]
KPNO-Tau-12 1.84;[44] 2.22 +0.11
−0.17
[28]
WASP-76b 1.83+0.06
−0.04
[65]
The tidally-locked planet where winds move 18,000 km/h, and where molten iron rains from the sky due to daytime temperatures exceeding 2,400 °C (4,350 °F).[66][67] WASP-76b is suspected to have an exo-Io candidate due to the sodium being detected via absorption spectroscopy around WASP-76b.[68]
HAT-P-33b 1.827±0.29,[69] 1.85±0.49[50]
TYC 8998-760-1 b 1.82±0.08[70] – 3.0+0.2
−0.7
,[71]
* Directly imaged companion around TYC 8998-760-1, an analog to the Sun, expect in age. TYC 8998-760-1 has an age of 27 myr. Its largest orbital body (TYC 8998-760-1 b) is 22 ± 3 MJ; likely making it a brown dwarf.[72][73][74]
Barnard's Star
(Proxima Ophiuchi)
1.820 ± 0.010[75] # Second nearest stellar system to the Sun at the distance of 5.97 ly (1.83 pc) and closest star in the northern celestial hemisphere. Also having the highest proper motion of any stars. Having an age of likely more than twice the age of the Solar System.
Reported for reference.
WASP-178b 1.81±0.09[50]
Saffar
(Upsilon Andromedae b)
1.8[76] 1.70+0.33
−0.24
MJ; Saffar orbits very close to its host star of 0.0595 AU, completing an orbit in 4.617 days.[77]
TrES-4b 1.799±0.063[78] This planet has a density of 0.2 g/cm3, about that of balsa wood, less than Saturn's 0.7 g/cm3.
WASP-122b 1.792±0.069[79]
KELT-12b 1.78+0.17
−0.16
[80]
TOI-640 b 1.771+0.060
−0.056
[50]
TOI-2193 Ab 1.77[81]
TOI-2669b 1.76±0.16[82]
HATS-26b 1.75±0.21[83]
KELT-14b 1.743±0.047[79]
KELT-15b 1.74±0.20[50]
HAT-P-57b 1.74±0.36[50]
KELT-20b
(MASCARA-2b)
1.735+0.07
−0.075
,[84]
1.741+0.069
−0.074
[50]
An ultra-hot Jupiter with the mass less than 3.382 MJ.
HAT-P-64b 1.703±0.070[50]
WASP-78b 1.70±0.04,[85]
1.93±0.45[50]
0.89±0.08 MJ; this planet has likely undergone in the past a migration from the initial highly eccentric orbit.[86]
Pollera
(WASP-79b)
1.70±0.11 – 2.09±0.14[85] A hot Jupiter, with the mass, 0.90±0.08 MJ,[87] less than that of Jupiter.
In 2019 and 2020, the transmission spectra of WASP-79b were taken utilizing HST and Spitzer Space Telescope, with best fit being the hazy atmosphere containing about 1% water[88] and traces of Iron(I) hydride.[89][90] The presence of iron hydride was confirmed in 2021, along with tentative detection of vanadium oxide.[91] Also, in 2022 an atmospheric sodium has been detected.[92]
Qatar-7b 1.70±0.03[50]
A few examples with radii under 1.7 RJ.
KELT-4Ab 1.699+0.046
−0.045
,[50]
1.706+0.085
−0.076
[93]
Kepler-12b 1.695+0.032
−0.032
,[94]
1.754+0.031
−0.036
[50]
1RXS 1609b 1.664[95][50] * 14+2.0
−3.0
MJ; is likely a brown dwarf. It's the third exoplanet to be announced as directly imaged orbiting a sun-like star (after GQ Lup b and AB Pic b).[96]
AB Aurigae b 1.6[97] – 2.75[98] * The large radius of 2.75 RJ is only valid for 1 Myr. Several publications give a higher age, e.g. 1-5 Myr,[98] 4±1 Myr,[99] 6.0+2.5
−1.0
Myr.[100] Its optical/UV detection is disputed,[101] its accretion rate is disputed[102], while its existence as a planet after original detection in the IR needs confirmation.[98]
AB Pictoris b 1.57±0.07 – 1.8±0.3[103] Previously believed to be a likely brown dwarf, with mass estimates of 13−14 MJ[104] to 70 MJ,[105] its mass is now estimated to be 10±MJ, with an age of 13+1.1
−0.6
million years.[106]
KOI-13b
(Kepler-13 Ab)
1.512±0.035,[50]
2.216±0.087[107]
Esteves et al. gives also radii of 1.512±0.035 RJ and 2.63+1.04
−0.82
 RJ. Batalha et al. calculate 2.03 RJ.[108]
Proxima Centauri
(Alpha Centauri C)
1.501±0.044[109] # The nearest star to the Sun at the distance of 4.24 ly (1.30 pc), orbiting around the Alpha Centauri AB system, the nearest star system to the Sun, at a separation of 13,000 AU (0.21 ly),[110] equivalent to about 430 times the radius of Neptune's orbit.
Reported for reference.
Kepler-7b 1.478+0.050
−0.051
[111]
Beta Pictoris b 1.46±0.01[112]
WASP-88b 1.46±0.21,[50]
1.7+0.13
−0.07
[113]
PSO J318.5−22 1.38[114] An extrasolar object that does not seem to be orbiting any star, see: rogue planet.
HD 209458 b 1.359+0.016
−0.019
[115]
First known transiting exoplanet.
HR 8799 c 1.3[116] Second outermost planet discovered using the direct imaging technique in the HR 8799 system. This planet contains water and carbon monoxide in its atmosphere.
TrES-2b
(Kepler-1b)
1.272±0.041[117] Darkest known exoplanet due to an extremely low geometric albedo. It absorbs 99% of light.
HR 8799 d 1.2+0.1
−0.0
[118]
Upon initial discovery, it was the innermost known planet in the HR 8799 system. After the discovery of HR 8799 e in 2010, it is the second innermost planet known in the system.
HR 8799 b 1.2+0.1
−0.1
[118]
Outermost planet discovered using the direct imaging technique in the HR 8799 system.
HR 8799 e 1.17+0.13
−0.11
[119]
Fourth and innermost planet discovered using the direct imaging technique in the HR 8799 system.
2M1207b 1.13[120] First directly imaged exoplanet to have spectrum taken; although it may be a sub-brown dwarf / captured rogue planet, its mass of 5.5±0.5 MJ[120] is well below the calculated limit for deuterium fusion in brown dwarfs of 13 MJ.
PDS 70 c 1.13+0.56
−0.43
 – 2.04+0.61
−0.45
[39]
CoRoT-3b 1.08±0.05[121] * The issue of whether CoRoT-3b, with the mass of 21.66±1.0 MJ[122], is a planet or a brown dwarf depends on the definition chosen for these terms. According to one definition, a brown dwarf is an object capable of fusing deuterium, a process which occurs in objects more massive than 13 MJ. According to this definition, which is the one adopted by the International Astronomical Union's Working Group on Extrasolar Planets, CoRoT-3b is a brown dwarf.[123] However, some models of planet formation predict that planets with masses up to 25–30 Jupiter masses can form via core accretion.[124] If this formation-based distinction between brown dwarfs and planets is used, the status of CoRoT-3b becomes less clear as the method of formation for this object is not known. The issue is clouded further by the orbital properties of the object: brown dwarfs located close to their stars are rare (a phenomenon known as the brown-dwarf desert), while the majority of the known massive close-in planets (for example XO-3b, HAT-P-2b and WASP-14b) are in highly eccentric orbits, in contrast to the circular orbit of CoRoT-3b.[122]
Epsilon Indi Ab 1.08[125][a] Nearest extrasolar planet directly imaged.
Kepler-39b
(formerly KOI-423b)
1.07±0.03[121][g] * 18.00+0.93
−0.91
MJ; may be brown dwarf based on mass.
Jupiter 1
(71 492 km)
# Largest planet in the Solar System[126]
Reported for reference.

See also

[edit]

Notes

[edit]
  1. ^ a b c d e Based on the estimated temperature and luminosity via the Stefan-Boltzmann law.
  2. ^ Using PMS evolutionary models and a potential higher age of 1 Myr, the luminosity would be lower, and the planet would be smaller. However, this would require for the object to be closer as well, which is unlikely. Another distance estimate to the Orion Nebula Cluster would result in a luminosity 1.14 times lower and also a smaller radius.[6]
  3. ^ 'Instead of a photo-evaporating disk it may be an evaporating gaseous globule (EGG)'. If so, it has a mass of 2 - 28 MJ.[6]
  4. ^ A calculated radius thus does not need to be the radius of the (dense) core.
  5. ^ [b] [c] [d] [6]
  6. ^ Based on the surface gravity and mass estimates from high-resolution retrievals.
  7. ^ A recent study reveals that Kepler-39b probably has a shape that is very oblate, which, if true, is very likely caused by its fast rotation. The estimated rotation period would be about 1.6 hours, very fast compared to about 10 hours for Jupiter and Saturn. Such a fast rotation also provides a natural explanation for its large radius.

References

[edit]
  1. ^ "Observing Exoplanets: What Can We Really See?". NASA Science. Retrieved 2024-08-16.
  2. ^ "Stanford scientists describe a gravity telescope that could image exoplanets". Stanford University - Stanford Report. Retrieved 2024-08-16.
  3. ^ "Just a few pixels would let astronomers map surface features like oceans and deserts on an exoplanet". Phys.org - (Universe Today). Retrieved 2024-08-16.
  4. ^ Jerry Coffey (8 July 2008). "What is the Biggest Planet in the Solar System?". Universe Today. Archived from the original on 16 November 2014. Retrieved 7 November 2014.
  5. ^ Chabrier, G.; Johansen, A.; Janson, M.; Rafikov, R. (2014). "Giant Planet and Brown Dwarf Formation". Protostars and Planets VI. arXiv:1401.7559. doi:10.2458/azu_uapress_9780816531240-ch027. ISBN 9780816531240. S2CID 67776527.
  6. ^ a b c d Fang, Min; Kim, Jinyoung Serena; Pascucci, Ilaria; Apai, Dániel; Manara, Carlo Felice (2016-12-12). "A candidate planetary-mass object with a photoevaporating disk in Orion". The Astrophysical Journal. 833 (2): L16. arXiv:1611.09761. Bibcode:2016ApJ...833L..16F. doi:10.3847/2041-8213/833/2/L16. ISSN 2041-8213.
  7. ^ a b Gómez Maqueo Chew, Yilen; Stassun, Keivan G.; Prša, Andrej; Mathieu, Robert D. (2009-07-10). "Near-Infrared Light Curves of the Brown Dwarf Eclipsing Binary 2Mass J05352184-0546085: Can Spots Explain the Temperature Reversal?". The Astrophysical Journal. 699 (2): 1196–1208. arXiv:0905.0491. Bibcode:2009ApJ...699.1196G. doi:10.1088/0004-637X/699/2/1196. ISSN 0004-637X.
  8. ^ Kraus, Adam L.; White, Russel J.; Hillenbrand, Lynne A. (2006-09-20). "Multiplicity and Optical Excess across the Substellar Boundary in Taurus". The Astrophysical Journal. 649 (1): 306–318. arXiv:astro-ph/0602449. Bibcode:2006ApJ...649..306K. doi:10.1086/503665. ISSN 0004-637X.
  9. ^ "Planet KPNO-Tau 4". Encyclopaedia of exoplanetary systems / Exoplanet.eu. Retrieved 2024-08-15.
  10. ^ a b c d e Xuan, Jerry W.; Hsu, Chih-Chun; Finnerty, Luke; Wang, Jason; Ruffio, Jean-Baptiste; Zhang, Yapeng; Knutson, Heather A.; Mawet, Dimitri; Mamajek, Eric E.; Inglis, Julie; Wallack, Nicole L.; Bryan, Marta L.; Blake, Geoffrey A.; Mollière, Paul; Hejazi, Neda (2024-07-01). "Are These Planets or Brown Dwarfs? Broadly Solar Compositions from High-resolution Atmospheric Retrievals of ∼10–30 M Jup Companions". The Astrophysical Journal. 970 (1): 71. arXiv:2405.13128. Bibcode:2024ApJ...970...71X. doi:10.3847/1538-4357/ad4796. ISSN 0004-637X.
  11. ^ Demars, D.; Bonnefoy, M.; Dougados, C.; Aoyama, Y.; Thanathibodee, T.; Marleau, G. -D.; Tremblin, P.; Delorme, P.; Palma-Bifani, P.; Petrus, S.; Bowler, B. P.; Chauvin, G.; Lagrange, A. -M. (2023-08-01). "Emission line variability of young 10-30 MJup companions. I. The case of GQ Lup b and GSC 06214-00210 b". Astronomy and Astrophysics. 676: A123. arXiv:2305.09460. Bibcode:2023A&A...676A.123D. doi:10.1051/0004-6361/202346221. ISSN 0004-6361.
  12. ^ Seifahrt, A.; Neuhäuser, R.; Hauschildt, P. H. (2007-02-01). "Near-infrared integral-field spectroscopy of the companion to GQ Lupi". Astronomy & Astrophysics. 463 (1): 309–313. arXiv:astro-ph/0612250. Bibcode:2007A&A...463..309S. doi:10.1051/0004-6361:20066463. ISSN 0004-6361. S2CID 119456238.
  13. ^ Stolker, Tomas; Haffert, Sebastiaan Y.; Kesseli, Aurora Y.; van Holstein, Rob G.; Aoyama, Yuhiko; Brinchmann, Jarle; Cugno, Gabriele; Girard, Julien H.; Marleau, Gabriel-Dominique; Meyer, Michael R.; Milli, Julien; Quanz, Sascha P.; Snellen, Ignas A. G.; Todorov, Kamen O. (2021-12-01). "Characterizing the Protolunar Disk of the Accreting Companion GQ Lupi B*". The Astronomical Journal. 162 (6): 286. arXiv:2110.04307. Bibcode:2021AJ....162..286S. doi:10.3847/1538-3881/ac2c7f. ISSN 0004-6256. S2CID 238582841.
  14. ^ a b Sun, Xilei; Huang, Pinghui; Dong, Ruobing; Liu, Shang-Fei (2024). "Observational characteristics of circum-planetary-mass-object disks in the era of James Webb Space Telescope". Astrophysical Journal. arXiv:2406.09501.
  15. ^ a b Sissa, Elena (2017). "Observation of extrasolar planets at various ages". PhD Thesis, University of Padua, 2017. Bibcode:2017PhDT.......406S.
  16. ^ Quanz, Sasch P.; Amara, Adam; Meyer, Michael P.; Kenworthy, Matthew P.; et al. (2014). "Confirmation and characterization of the protoplanet HD100546 b - Direct evidence for gas giant planet formation at 50 au". Astrophysical Journal. 807 (1). 64. arXiv:1412.5173. Bibcode:2015ApJ...807...64Q. doi:10.1088/0004-637X/807/1/64. S2CID 119119314.
  17. ^ a b c d e Bonnefoy, M.; Chauvin, G.; Lagrange, A.-M.; Rojo, P.; Allard, F.; Pinte, C.; Dumas, C.; Homeier, D. (February 2014). "A library of near-infrared integral field spectra of young M–L dwarfs". Astronomy & Astrophysics. 562: A127. arXiv:1306.3709. Bibcode:2014A&A...562A.127B. doi:10.1051/0004-6361/201118270. ISSN 0004-6361.
  18. ^ Luhman, K. L.; et al. (February 2005), "Spitzer Identification of the Least Massive Known Brown Dwarf with a Circumstellar Disk", The Astrophysical Journal, 620 (1): L51–L54, arXiv:astro-ph/0502100, Bibcode:2005ApJ...620L..51L, doi:10.1086/428613, S2CID 15340083
  19. ^ Joergens, V.; Bonnefoy, M.; Liu, Y.; Bayo, A.; Wolf, S.; Chauvin, G.; Rojo, P. (2013). "OTS 44: Disk and accretion at the planetary border". Astronomy & Astrophysics. 558 (7): L7. arXiv:1310.1936. Bibcode:2013A&A...558L...7J. doi:10.1051/0004-6361/201322432. S2CID 118456052.
  20. ^ a b Bowler, Brendan P.; Hillenbrand, Lynne A. (2015-09-28). "Near-Infrared Spectroscopy of 2M0441+2301 AabBab: A Quadruple System Spanning the Stellar to Planetary Mass Regimes". The Astrophysical Journal. 811 (2): L30. arXiv:1509.01658. Bibcode:2015ApJ...811L..30B. doi:10.1088/2041-8205/811/2/L30. ISSN 2041-8213.
  21. ^ Etangs, A. Lecavelier des; Lissauer, Jack J. (June 2022). "The IAU Working Definition of an Exoplanet". New Astronomy Reviews. 94: 101641. arXiv:2203.09520. Bibcode:2022NewAR..9401641L. doi:10.1016/j.newar.2022.101641.
  22. ^ Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn (2016-04-20). "LIVING WITH A RED DWARF: ROTATION AND X-RAY AND ULTRAVIOLET PROPERTIES OF THE HALO POPULATION KAPTEYN'S STAR*". The Astrophysical Journal. 821 (2): 81. arXiv:1602.01912. Bibcode:2016ApJ...821...81G. doi:10.3847/0004-637X/821/2/81. ISSN 0004-637X.
  23. ^ a b Zhou, Yifan; Herczeg, Gregory J; Kraus, Adam L; Metchev, Stanimir; Cruz, Kelle L (2014). "Accretion onto Planetary Mass Companions of Low-mass Young Stars". The Astrophysical Journal Letters. 783 (1): L17. arXiv:1401.6545. Bibcode:2014ApJ...783L..17Z. doi:10.1088/2041-8205/783/1/L17. S2CID 119255447.
  24. ^ Xuan, Jerry W.; Bryan, Marta L.; Knutson, Heather A.; Bowler, Brendan P.; Morley, Caroline V.; Benneke, Björn (2020-02-10). "A Rotation Rate for the Planetary-Mass Companion DH Tau b". The Astronomical Journal. 159 (3): 97. arXiv:2001.01759. Bibcode:2020AJ....159...97X. doi:10.3847/1538-3881/ab67c4. ISSN 1538-3881. S2CID 210023665.
  25. ^ Xuan, Jerry W.; Bryan, Marta L.; Knutson, Heather A.; Bowler, Brendan P.; Morley, Caroline V.; Benneke, Björn (2020-03-01). "A Rotation Rate for the Planetary-mass Companion DH Tau b". The Astronomical Journal. 159 (3): 97. arXiv:2001.01759. Bibcode:2020AJ....159...97X. doi:10.3847/1538-3881/ab67c4. ISSN 0004-6256.
  26. ^ Martinez, Raquel A.; Kraus, Adam L. (2021-12-23). "A Mid-infrared Study of Directly Imaged Planetary-mass Companions Using Archival Spitzer/IRAC Images". The Astronomical Journal. 163 (1): 36. arXiv:2111.03087. Bibcode:2022AJ....163...36M. doi:10.3847/1538-3881/ac3745. ISSN 0004-6256.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  27. ^ Lazzoni, C.; Zurlo, A.; Desidera, S.; Mesa, D.; Fontanive, C.; Bonavita, M.; Ertel, S.; Rice, K.; Vigan, A.; Boccaletti, A.; Bonnefoy, M.; Chauvin, G.; Delorme, P.; Gratton, R.; Houllé, M. (September 2020). "The search for disks or planetary objects around directly imaged companions: a candidate around DH Tauri B". Astronomy & Astrophysics. 641: A131. arXiv:2007.10097. Bibcode:2020A&A...641A.131L. doi:10.1051/0004-6361/201937290. ISSN 0004-6361.
  28. ^ a b c d e Bryan, Marta L.; Ginzburg, Sivan; Chiang, Eugene; Morley, Caroline; Bowler, Brendan P.; Xuan, Jerry W.; Knutson, Heather A. (2020-12-01). "As the Worlds Turn: Constraining Spin Evolution in the Planetary-mass Regime". The Astrophysical Journal. 905 (1): 37. arXiv:2010.07315. Bibcode:2020ApJ...905...37B. doi:10.3847/1538-4357/abc0ef. ISSN 0004-637X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  29. ^ Kuzuhara, M.; Tamura, M.; Ishii, M.; Kudo, T.; Nishiyama, S.; Kandori, R. (2011-04-01). "THE WIDEST-SEPARATION SUBSTELLAR COMPANION CANDIDATE TO A BINARY T TAURI STAR". The Astronomical Journal. 141 (4): 119. Bibcode:2011AJ....141..119K. doi:10.1088/0004-6256/141/4/119. ISSN 0004-6256.
  30. ^ Bowler, Brendan P.; Liu, Michael C.; Kraus, Adam L.; Mann, Andrew W. (2014-03-05). "SPECTROSCOPIC CONFIRMATION OF YOUNG PLANETARY-MASS COMPANIONS ON WIDE ORBITS". The Astrophysical Journal. 784 (1): 65. arXiv:1401.7668. Bibcode:2014ApJ...784...65B. doi:10.1088/0004-637X/784/1/65. ISSN 0004-637X.
  31. ^ a b Hurt, Spencer A.; Liu, Michael C.; Zhang, Zhoujian; Phillips, Mark; Allers, Katelyn N.; Deacon, Niall R.; Aller, Kimberly M.; Best, William M. J. (2024-01-01). "Uniform Forward-modeling Analysis of Ultracool Dwarfs. III. Late-M and L Dwarfs in Young Moving Groups, the Pleiades, and the Hyades". The Astrophysical Journal. 961 (1): 121. arXiv:2311.04268. Bibcode:2024ApJ...961..121H. doi:10.3847/1538-4357/ad0b12. ISSN 0004-637X.
  32. ^ a b Hou, Qiang; Wei, Xing (2022). "Why hot Jupiters can be large but not too large". Monthly Notices of the Royal Astronomical Society. 511 (3): 3133–3137. arXiv:2201.07008. doi:10.1093/mnras/stac169.
  33. ^ Schmidt, T. O. B.; Neuhäuser, R.; Seifahrt, A.; Vogt, N.; Bedalov, A.; Helling, Ch.; Witte, S.; Hauschildt, P. H. (2008). "Direct evidence of a sub-stellar companion around CT Chamaeleontis". Astronomy & Astrophysics. 491 (1): 311–320. arXiv:0809.2812. Bibcode:2008A&A...491..311S. doi:10.1051/0004-6361:20078840. S2CID 17161561.
  34. ^ Daemgen, Sebastian; Todorov, Kamen; Silva, Jasmin; Hand, Derek; Garcia, Eugenio V.; Currie, Thayne; Burrows, Adam; Stassun, Keivan G.; Ratzka, Thorsten; Debes, John H.; Lafreniere, David; Jayawardhana, Ray; Correia, Serge (2017-05-01). "Mid-infrared characterization of the planetary-mass companion ROXs 42B b". Astronomy & Astrophysics. 601: A65. arXiv:1702.06549. Bibcode:2017A&A...601A..65D. doi:10.1051/0004-6361/201629949. ISSN 0004-6361.
  35. ^ a b Inglis, Julie; Wallack, Nicole L.; Xuan, Jerry W.; Knutson, Heather A.; Chachan, Yayaati; Bryan, Marta L.; Bowler, Brendan P.; Iyer, Aishwarya; Kataria, Tiffany; Benneke, Björn; et al. (15 April 2024). "Atmospheric Retrievals of the Young Giant Planet ROXs 42B b from Low- and High-resolution Spectroscopy". The Astronomical Journal. 167 (5): 19. arXiv:2402.09533. Bibcode:2024AJ....167..218I. doi:10.3847/1538-3881/ad2771. ISSN 1538-3881. S2CID 267681834.
  36. ^ Currie, Thayne; Burrows, Adam; Daemgen, Sebastian (2014-05-08). "A FIRST-LOOK ATMOSPHERIC MODELING STUDY OF THE YOUNG DIRECTLY IMAGED PLANET-MASS COMPANION, ROXS 42Bb". The Astrophysical Journal. 787 (2): 104. arXiv:1404.0131. Bibcode:2014ApJ...787..104C. doi:10.1088/0004-637X/787/2/104. ISSN 0004-637X.
  37. ^ Currie, Thayne; Daemgen, Sebastian; Debes, John; Lafreniere, David; Itoh, Yoichi; Jayawardhana, Ray; Ratzka, Thorsten; Correia, Serge (2013-12-19). "Direct Imaging and Spectroscopy of a Candidate Companion Below/Near the Deuterium-Burning Limit in the Young Binary Star System, ROXs 42B". The Astrophysical Journal. 780 (2): L30. arXiv:1310.4825. Bibcode:2014ApJ...780L..30C. doi:10.1088/2041-8205/780/2/L30. ISSN 2041-8205.
  38. ^ Kraus, Adam L.; Ireland, Michael J.; Cieza, Lucas A.; Hinkley, Sasha; Dupuy, Trent J.; Bowler, Brendan P.; Liu, Michael C. (2013-12-31). "Three Wide Planetary-Mass Companions to FW Tau, ROXs 12, and ROXs 42B". The Astrophysical Journal. 781 (1): 20. arXiv:1311.7664. Bibcode:2014ApJ...781...20K. doi:10.1088/0004-637X/781/1/20. ISSN 0004-637X.
  39. ^ a b Wang, Jason J.; Ginzburg, Sivan; Ren, Bin; Wallack, Nicole; Gao, Peter; Mawet, Dimitri; Bond, Charlotte Z.; Cetre, Sylvain; Wizinowich, Peter; De Rosa, Robert J.; Ruane, Garreth (2020-05-18). "Keck/NIRC2 L'-Band Imaging of Jovian-Mass Accreting Protoplanets around PDS 70". The Astronomical Journal. 159 (6): 263. arXiv:2004.09597. Bibcode:2020AJ....159..263W. doi:10.3847/1538-3881/ab8aef. hdl:2268/254014. ISSN 1538-3881. S2CID 216035946.
  40. ^ Wang 王, J. J. 劲飞; Vigan, A.; Lacour, S.; Nowak, M.; Stolker, T.; De Rosa, R. J.; Ginzburg, S.; Gao, P.; Abuter, R.; Amorim, A.; Asensio-Torres, R.; Bauböck, M.; Benisty, M.; Berger, J. P.; Beust, H. (2021-03-01). "Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY ∗". The Astronomical Journal. 161 (3): 148. arXiv:2101.04187. Bibcode:2021AJ....161..148W. doi:10.3847/1538-3881/abdb2d. ISSN 0004-6256.
  41. ^ Zhou, G; Bakos, G. Á; Hartman, J. D; Latham, D. W; Torres, G; Bhatti, W; Penev, K; Buchhave, L; Kovács, G; Bieryla, A; Quinn, S; Isaacson, H; Fulton, B. J; Falco, E; Csubry, Z; Everett, M; Szklenar, T; Esquerdo, G; Berlind, P; Calkins, M. L; Béky, B; Knox, R. P; Hinz, P; Horch, E. P; Hirsch, L; Howell, S. B; Noyes, R. W; Marcy, G; De Val-Borro, M; et al. (2017). "HAT-P-67b: An Extremely Low Density Saturn Transiting an F-subgiant Confirmed via Doppler Tomography". The Astronomical Journal. 153 (5): 211. arXiv:1702.00106. Bibcode:2017AJ....153..211Z. doi:10.3847/1538-3881/aa674a. S2CID 119491990.
  42. ^ Manitowoc, Terrence Gollata (2018-11-27). "What's the diameter of the largest exoplanet found so far?". Astronomy Magazine. Retrieved 2024-01-03.
  43. ^ a b Crouzet, N; McCullough, P. R; Long, D; Montanes Rodriguez, P; Lecavelier Des Etangs, A; Ribas, I; Bourrier, V; Hébrard, G; Vilardell, F; Deleuil, M; Herrero, E; Garcia-Melendo, E; Akhenak, L; Foote, J; Gary, B; Benni, P; Guillot, T; Conjat, M; Mékarnia, D; Garlitz, J; Burke, C. J; Courcol, B; Demangeon, O (2017). "Discovery of XO-6b: A Hot Jupiter Transiting a Fast Rotating F5 Star on an Oblique Orbit". The Astronomical Journal. 153 (3): 94. arXiv:1612.02776. Bibcode:2017AJ....153...94C. doi:10.3847/1538-3881/153/3/94. S2CID 119082666.
  44. ^ a b c Rilinger, Anneliese M.; Espaillat, Catherine C. (November 2021). "Disk Masses and Dust Evolution of Protoplanetary Disks around Brown Dwarfs". The Astrophysical Journal. 921 (2): 182. arXiv:2106.05247. Bibcode:2021ApJ...921..182R. doi:10.3847/1538-4357/ac09e5. ISSN 0004-637X.
  45. ^ "Planet CFHTWIR-Oph 90". Encyclopaedia of exoplanetary systems / Exoplanet.eu. Retrieved 2024-08-15.
  46. ^ Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R. (2017-06-01). "The GAPS Programme with HARPS-N at TNG . XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets". Astronomy and Astrophysics. 602: A107. arXiv:1704.00373. Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. ISSN 0004-6361.
  47. ^ Anderson, D. R.; et al. (2010). "WASP-17b: An Ultra-Low Density Planet in a Probable Retrograde Orbit". The Astrophysical Journal. 709 (1): 159–167. arXiv:0908.1553. Bibcode:2010ApJ...709..159A. doi:10.1088/0004-637X/709/1/159. S2CID 53628741.
  48. ^ Kaufman, Rachel (17 August 2009). ""Backward" Planet Has Density of Foam Coffee Cups". National Geographic. National Geographic Society. Archived from the original on August 20, 2009. Retrieved 6 February 2011.
  49. ^ Almenara, J. M; Damiani, C; Bouchy, F; Havel, M; Bruno, G; Hébrard, G; Diaz, R. F; Deleuil, M; Barros, S. C. C; Boisse, I; Bonomo, A. S; Montagnier, G; Santerne, A (2015). "SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: A massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars". Astronomy & Astrophysics. 575: A71. arXiv:1501.01486. Bibcode:2015A&A...575A..71A. doi:10.1051/0004-6361/201424291. S2CID 118701259.
  50. ^ a b c d e f g h i j k l m n o p q r "Planetary Systems Composite Data". NASA Exoplanet Archive. Retrieved 12 December 2021.
  51. ^ Hartman, J. D; Bakos, G. Á; Torres, G; Latham, D. W; Kovács, Géza; Béky, B; Quinn, S. N; Mazeh, T; Shporer, A; Marcy, G. W; Howard, A. W; Fischer, D. A; Johnson, J. A; Esquerdo, G. A; Noyes, R. W; Sasselov, D. D; Stefanik, R. P; Fernandez, J. M; Szklenár, T; Lázár, J; Papp, I; Sári, P (2011). "HAT-P-32b and HAT-P-33b: Two Highly Inflated Hot Jupiters Transiting High-jitter Stars". The Astrophysical Journal. 742 (1): 59. arXiv:1106.1212. Bibcode:2011ApJ...742...59H. doi:10.1088/0004-637X/742/1/59. S2CID 118590713.
  52. ^ a b "Planet CFHTWIR-Oph 98 b". Encyclopaedia of exoplanetary systems / Exoplanet.eu. Retrieved 2024-08-15.
  53. ^ Chakrabarty, Aritra; Sengupta, Sujan (2019-07-01). "Precise Photometric Transit Follow-up Observations of Five Close-in Exoplanets: Update on Their Physical Properties". The Astronomical Journal. 158 (1): 39. arXiv:1905.11258. Bibcode:2019AJ....158...39C. doi:10.3847/1538-3881/ab24dd. ISSN 0004-6256.
  54. ^ Российские астрономы впервые открыли луну возле экзопланеты (in Russian) - "Studying of a curve of change of shine of WASP-12b has brought to the Russian astronomers unusual result: regular splashes were found out.<...> Though stains on a star surface also can cause similar changes of shine, observable splashes are very similar on duration, a profile and amplitude that testifies for benefit of exomoon existence."
  55. ^ Šubjak, Ján; Latham, David W.; Quinn, Samuel N.; Berlind, Perry; Calkins, Michael L.; Esquerdo, Gilbert A.; Brahm, Rafael; Guenther, Eike; Janík, Jan (2024-03-18), "Evolution of BD-14 3065b (TOI-4987b) from giant planet to brown dwarf as possible evidence of deuterium burning at old stellar ages", Astronomy & Astrophysics, 688: A120, arXiv:2403.12311, Bibcode:2024A&A...688A.120S, doi:10.1051/0004-6361/202349028
  56. ^ Siverd, Robert J; Collins, Karen A; Zhou, George; Quinn, Samuel N; Scott Gaudi, B; Stassun, Keivan G; Johnson, Marshall C; Bieryla, Allyson; Latham, David W; Ciardi, David R; Rodriguez, Joseph E; Penev, Kaloyan; Pinsonneault, Marc; Pepper, Joshua; Eastman, Jason D; Relles, Howard; Kielkopf, John F; Gregorio, Joao; Oberst, Thomas E; Giulio Francesco Aldi; Esquerdo, Gilbert A; Calkins, Michael L; Berlind, Perry; Dressing, Courtney D; Patel, Rahul; Stevens, Daniel J; Beatty, Thomas G; Lund, Michael B; Labadie-Bartz, Jonathan; et al. (2017). "KELT-19Ab: A P~4.6 Day Hot Jupiter Transiting a Likely Am Star with a Distant Stellar Companion". The Astronomical Journal. 155 (155): 35. arXiv:1709.07010. Bibcode:2018AJ....155...35S. doi:10.3847/1538-3881/aa9e4d. S2CID 54002227.
  57. ^ Martins, J. H. C; Santos, N. C; Figueira, P; Faria, J. P; Montalto, M; Boisse, I; Ehrenreich, D; Lovis, C; Mayor, M; Melo, C; Pepe, F; Sousa, S. G; Udry, S; Cunha, D (2015). "Evidence for a spectroscopic direct detection of reflected light from 51 Pegasi b". Astronomy & Astrophysics. 576: A134. arXiv:1504.05962. Bibcode:2015A&A...576A.134M. doi:10.1051/0004-6361/201425298. S2CID 119224213.
  58. ^ Gaudi, B. Scott; Stassun, Keivan G; Collins, Karen A; Beatty, Thomas G; Zhou, George; Latham, David W; Bieryla, Allyson; Eastman, Jason D; Siverd, Robert J; Crepp, Justin R; Gonzales, Erica J; Stevens, Daniel J; Buchhave, Lars A; Pepper, Joshua; Johnson, Marshall C; Colon, Knicole D; Jensen, Eric L. N; Rodriguez, Joseph E; Bozza, Valerio; Novati, Sebastiano Calchi; d'Ago, Giuseppe; Dumont, Mary T; Ellis, Tyler; Gaillard, Clement; Jang-Condell, Hannah; Kasper, David H; Fukui, Akihiko; Gregorio, Joao; Ito, Ayaka; et al. (2017). "A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host". Nature. 546 (7659): 514–518. arXiv:1706.06723. Bibcode:2017Natur.546..514G. doi:10.1038/nature22392. PMID 28582774. S2CID 205256410.
  59. ^ Gaudi, B. Scott; et al. (5 June 2017). "A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host" (pdf). Nature. 546 (7659): 514–518. arXiv:1706.06723. Bibcode:2017Natur.546..514G. doi:10.1038/nature22392. ISSN 1476-4687. PMID 28582774. S2CID 205256410. Retrieved 2017-06-06.
  60. ^ Hartman, J. D; Bakos, G. Á; Bhatti, W; Penev, K; Bieryla, A; Latham, D. W; Kovács, G; Torres, G; Csubry, Z; De Val-Borro, M; Buchhave, L; Kovács, T; Quinn, S; Howard, A. W; Isaacson, H; Fulton, B. J; Everett, M. E; Esquerdo, G; Béky, B; Szklenar, T; Falco, E; Santerne, A; Boisse, I; Hébrard, G; Burrows, A; Lázár, J; Papp, I; Sári, P (2016). "HAT-P-65b and HAT-P-66b: Two Transiting Inflated Hot Jupiters and Observational Evidence for the Reinflation of Close-in Giant Planets". The Astronomical Journal. 152 (6): 182. arXiv:1609.02767. Bibcode:2016AJ....152..182H. doi:10.3847/0004-6256/152/6/182. S2CID 118546031.
  61. ^ Delrez, L; Santerne, A; Almenara, J.-M; Anderson, D. R; Collier-Cameron, A; Díaz, R. F; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P. F. L; Neveu-Vanmalle, M; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smalley, B; Smith, A. M. S; Triaud, A. H. M. J; Udry, S; Van Grootel, V; West, R. G (2016). "WASP-121 b: A hot Jupiter close to tidal disruption transiting an active F star". Monthly Notices of the Royal Astronomical Society. 458 (4): 4025. arXiv:1506.02471. Bibcode:2016MNRAS.458.4025D. doi:10.1093/mnras/stw522.
  62. ^ Hoeijmakers, H.J.; Seidel, J.V.; Pino, L.; Kitzmann, D.; Sindel, J.P.; Ehrenreich, D.; Oza, A.V.; Bourrier, V.; Allart, R.; Gebek, A.; Lovis, C.; Yurchenko, S.N.; Astudillo-Defru, N.; Bayliss, D.; Cegla, H.; Lavie, B.; Lendl, M.; Melo, C.; Murgas, F.; Nascimbeni, V.; Pepe, F.; Segransan, D.; Udry, S.; Wyttenbach, A.; Heng, K. (18 September 2020). "Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) - IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP-121 b". Astronomy & Astrophysics. 641: A123. arXiv:2006.11308. Bibcode:2020A&A...641A.123H. doi:10.1051/0004-6361/202038365. S2CID 219966241.
  63. ^ Bento, J; Schmidt, B; Hartman, J. D; Bakos, G. Á; Ciceri, S; Brahm, R; Bayliss, D; Espinoza, N; Zhou, G; Rabus, M; Bhatti, W; Penev, K; Csubry, Z; Jordán, A; Mancini, L; Henning, T; De Val-Borro, M; Tinney, C. G; Wright, D. J; Durkan, S; Suc, V; Noyes, R; Lázár, J; Papp, I; Sári, P (2017). "HATS-22b, HATS-23b and HATS-24b: Three new transiting super-Jupiters from the HATSouth project". Monthly Notices of the Royal Astronomical Society. 468 (1): 835–848. arXiv:1607.00688. Bibcode:2017MNRAS.468..835B. doi:10.1093/mnras/stx500. S2CID 119228961.
  64. ^ Fulton, Benjamin J; Collins, Karen A; Gaudi, B. Scott; Stassun, Keivan G; Pepper, Joshua; Beatty, Thomas G; Siverd, Robert J; Penev, Kaloyan; Howard, Andrew W; Baranec, Christoph; Corfini, Giorgio; Eastman, Jason D; Gregorio, Joao; Law, Nicholas M; Lund, Michael B; Oberst, Thomas E; Penny, Matthew T; Riddle, Reed; Rodriguez, Joseph E; Stevens, Daniel J; Zambelli, Roberto; Ziegler, Carl; Bieryla, Allyson; d'Ago, Giuseppe; Depoy, Darren L; Jensen, Eric L. N; Kielkopf, John F; Latham, David W; Manner, Mark; et al. (2015). "KELT-8b: A Highly Inflated Transiting Hot Jupiter and a New Technique for Extracting High-precision Radial Velocities from Noisy Spectra". The Astrophysical Journal. 810 (1): 30. arXiv:1505.06738. Bibcode:2015ApJ...810...30F. doi:10.1088/0004-637X/810/1/30. S2CID 17747458.
  65. ^ West, R. G; Hellier, C; Almenara, J.-M; Anderson, D. R; Barros, S. C. C; Bouchy, F; Brown, D. J. A; Collier Cameron, A; Deleuil, M; Delrez, L; Doyle, A. P; Faedi, F; Fumel, A; Gillon, M; Gómez Maqueo Chew, Y; Hébrard, G; Jehin, E; Lendl, M; Maxted, P. F. L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smalley, B; Smith, A. M. S; Southworth, J; Triaud, A. H. M. J; Udry, S (2016). "Three irradiated and bloated hot Jupiters:. WASP-76b, WASP-82b, and WASP-90b" (PDF). Astronomy & Astrophysics. 585: A126. arXiv:1310.5607. Bibcode:2016A&A...585A.126W. doi:10.1051/0004-6361/201527276. S2CID 54746373. Archived (PDF) from the original on 2017-09-21. Retrieved 2018-11-04.
  66. ^ Amos, Jonathan (March 11, 2020). "Wasp-76b: The exotic inferno planet where it 'rains iron'". BBC. Retrieved March 11, 2020.
  67. ^ Ehrenreich, D.; Lovis, C.; Allart, R.; et al. (2020). "Nightside condensation of iron in an ultrahot giant exoplanet". Nature. 503 (7805): 597–601. arXiv:2003.05528. Bibcode:2020Natur.580..597E. doi:10.1038/s41586-020-2107-1. PMC 7212060. PMID 32161364.
  68. ^ Seidel, J.V.; Ehrenreich, D.; Wyttenbach, A.; Allart, R.; Lendl, M.; Pino, L.; Bourrier, V.; Cegla, H.M.; Lovis, C.; Barrado, D.; Bayliss, D.; Astudillo-Defru, N.; Deline, A.; Fisher, C.; Heng, K.; Joseph, R.; Lavie, B.; Melo, C.; Pepe, F.; Segransan, D.; Udry, S. (27 March 2019). "Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)★ II. A broadened sodium feature on the ultra-hot giant WASP-76b". Astronomy & Astrophysics. 623: A166. arXiv:1902.00001. Bibcode:2019A&A...623A.166S. doi:10.1051/0004-6361/201834776. S2CID 119348582.
  69. ^ Hartman, J. D; Bakos, G. Á; Torres, G; Latham, D. W; Kovács, G; Béky, B; Quinn, S. N; Mazeh, T; Shporer, A; Marcy, G. W; Howard, A. W; Fischer, D. A; Johnson, J. A; Esquerdo, G. A; Noyes, R. W; Sasselov, D. D; Stefanik, R. P; Fernandez, J. M; Szklenár, T; Lázár, J; Papp, I; Sári, P (2011). "HAT-P-32b and HAT-P-33b: Two Highly Inflated Hot Jupiters Transiting High-Jitter Stars". The Astrophysical Journal. 742 (1): 59. arXiv:1106.1212. Bibcode:2011ApJ...742...59H. doi:10.1088/0004-637X/742/1/59. S2CID 118590713.
  70. ^ Zhang, Yapeng; Snellen, Ignas A. G.; Bohn, Alexander J.; Mollière, Paul; Ginski, Christian; Hoeijmakers, H. Jens; Kenworthy, Matthew A.; Mamajek, Eric E.; Meshkat, Tiffany; Reggiani, Maddalena; Snik, Frans (2021-07-15). "The 13CO-rich atmosphere of a young accreting super-Jupiter". Nature. 595 (7867): 370–372. arXiv:2107.06297. Bibcode:2021Natur.595..370Z. doi:10.1038/s41586-021-03616-x. ISSN 0028-0836. PMID 34262209. S2CID 235829633.
  71. ^ "The Extrasolar Planet Encyclopaedia - Catalog Listing". Extrasolar Planets Encyclopaedia. 1995.
  72. ^ Wall, Mike (22 July 2020). "Multiplanet system around sunlike star photographed for 1st time ever - The two newly imaged planets are huge — 14 and 6 times more massive than Jupiter". Space.com. Retrieved 22 July 2020.
  73. ^ Bohn, Alexander; et al. (22 July 2020). "Two Directly Imaged, Wide-orbit Giant Planets around the Young, Solar Analog TYC 8998-760-1". The Astrophysical Journal Letters. 898 (1): L16. arXiv:2007.10991. Bibcode:2020ApJ...898L..16B. doi:10.3847/2041-8213/aba27e. S2CID 220686536.
  74. ^ Wood, Mackenna L.; Mann, Andrew W.; Barber, Madyson G.; Bush, Jonathan L.; Kraus, Adam L.; Tofflemire, Benjamin M.; Vanderburg, Andrew; Newton, Elisabeth R.; Feiden, Gregory A.; Zhou, George; Bouma, Luke G.; Quinn, Samuel N.; Armstrong, David J.; Osborn, Ares; Adibekyan, Vardan (2023-03-01). "TESS Hunt for Young and Maturing Exoplanets (THYME). IX. A 27 Myr Extended Population of Lower Centaurus Crux with a Transiting Two-planet System". The Astronomical Journal. 165 (3): 85. arXiv:2212.03266. Bibcode:2023AJ....165...85W. doi:10.3847/1538-3881/aca8fc. ISSN 0004-6256.
  75. ^ Pineda, J. Sebastian; Youngblood, Allison; France, Kevin (2021-09-01). "The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars". The Astrophysical Journal. 918 (1): 40. arXiv:2106.07656. Bibcode:2021ApJ...918...40P. doi:10.3847/1538-4357/ac0aea. ISSN 0004-637X.
  76. ^ Deitrick, Russell; Barnes, Rory; McArthur, Barbara; Quinn, Thomas R.; Luger, Rodrigo; Antonsen, Adrienne; Benedict, G. Fritz (2014-12-18). "The 3-dimensional architecture of the Upsilon Andromedae planetary system". The Astrophysical Journal. 798 (1): 46. arXiv:1411.1059. doi:10.1088/0004-637X/798/1/46. ISSN 1538-4357.
  77. ^ Butler, R. P.; et al. (2006). "Catalog of Nearby Exoplanets". The Astrophysical Journal. 646 (1): 505–522. arXiv:astro-ph/0607493. Bibcode:2006ApJ...646..505B. doi:10.1086/504701. S2CID 119067572. (web version)
  78. ^ Daemgen, S.; Hormuth, F.; Brandner, W.; Bergfors, C.; Janson, M.; Hippler, S.; Henning, T. (200). "Binarity of transit host stars - Implications for planetary parameters" (PDF). Astronomy and Astrophysics. 498 (2): 567–574. arXiv:0902.2179. Bibcode:2009A&A...498..567D. doi:10.1051/0004-6361/200810988. S2CID 9893376. Archived (PDF) from the original on 2012-03-06. Retrieved 2016-12-06.
  79. ^ a b Turner, O. D; Anderson, D. R; Collier Cameron, A; Delrez, L; Evans, D. F; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P. F. L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smalley, B; Smith, A. M. S; Triaud, A. H. M. J; Udry, S; West, R. G (2016). "WASP-120 b, WASP-122 b, AND WASP-123 b: Three Newly Discovered Planets from the WASP-South Survey". Publications of the Astronomical Society of the Pacific. 128 (964): 064401. arXiv:1509.02210. Bibcode:2016PASP..128f4401T. doi:10.1088/1538-3873/128/964/064401. S2CID 53647627.
  80. ^ Stevens, Daniel J; Collins, Karen A; Gaudi, B. Scott; Beatty, Thomas G; Siverd, Robert J; Bieryla, Allyson; Fulton, Benjamin J; Crepp, Justin R; Gonzales, Erica J; Coker, Carl T; Penev, Kaloyan; Stassun, Keivan G; Jensen, Eric L. N; Howard, Andrew W; Latham, David W; Rodriguez, Joseph E; Zambelli, Roberto; Bozza, Valerio; Reed, Phillip A; Gregorio, Joao; Buchhave, Lars A; Penny, Matthew T; Pepper, Joshua; Berlind, Perry; Calchi Novati, Sebastiano; Calkins, Michael L; d'Ago, Giuseppe; Eastman, Jason D; Bayliss, D; et al. (2017). "KELT-12b: A P ˜ 5 day, Highly Inflated Hot Jupiter Transiting a Mildly Evolved Hot Star". The Astronomical Journal. 153 (4): 178. arXiv:1608.04714. Bibcode:2017AJ....153..178S. doi:10.3847/1538-3881/aa5ffb. S2CID 27321568.
  81. ^ Yee, Samuel W.; Winn, Joshua N.; Hartman, Joel D.; Rodriguez, Joseph E.; Zhou, George; Quinn, Samuel N.; Latham, David W.; Bieryla, Allyson; Collins, Karen A.; Addison, Brett C.; Angelo, Isabel; Barkaoui, Khalid; Benni, Paul; Boyle, Andrew W.; Brahm, Rafael (2022-08-01). "The TESS Grand Unified Hot Jupiter Survey. I. Ten TESS Planets". The Astronomical Journal. 164 (2): 70. arXiv:2205.09728. Bibcode:2022AJ....164...70Y. doi:10.3847/1538-3881/ac73ff. ISSN 0004-6256.
  82. ^ Rodriguez, Joseph E.; Quinn, Samuel N.; Zhou, George; Vanderburg, Andrew; Nielsen, Louise D.; Wittenmyer, Robert A.; Brahm, Rafael; Reed, Phillip A.; Huang, Chelsea X.; Vach, Sydney; Ciardi, David R.; Oelkers, Ryan J.; Stassun, Keivan G.; Hellier, Coel; Gaudi, B. Scott (2021-04-01). "TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images". The Astronomical Journal. 161 (4): 194. arXiv:2101.01726. Bibcode:2021AJ....161..194R. doi:10.3847/1538-3881/abe38a. ISSN 0004-6256.
  83. ^ Espinoza, N; Bayliss, D; Hartman, J. D; Bakos, G. Á; Jordán, A; Zhou, G; Mancini, L; Brahm, R; Ciceri, S; Bhatti, W; Csubry, Z; Rabus, M; Penev, K; Bento, J; De Val-Borro, M; Henning, T; Schmidt, B; Suc, V; Wright, D. J; Tinney, C. G; Tan, T. G; Noyes, R (2016). "HATS-25b through HATS-30b: A Half-dozen New Inflated Transiting Hot Jupiters from the HATSouth Survey". The Astronomical Journal. 152 (4): 108. arXiv:1606.00023. Bibcode:2016AJ....152..108E. doi:10.3847/0004-6256/152/4/108. S2CID 119104881.
  84. ^ Lund, Michael B; Rodriguez, Joseph E; Zhou, George; Scott Gaudi, B; Stassun, Keivan G; Johnson, Marshall C; Bieryla, Allyson; Oelkers, Ryan J; Stevens, Daniel J; Collins, Karen A; Penev, Kaloyan; Quinn, Samuel N; Latham, David W; Steven Villanueva Jr; Eastman, Jason D; Kielkopf, John F; Oberst, Thomas E; Jensen, Eric L. N; Cohen, David H; Joner, Michael D; Stephens, Denise C; Relles, Howard; Corfini, Giorgio; Gregorio, Joao; Zambelli, Roberto; Esquerdo, Gilbert A; Calkins, Michael L; Berlind, Perry; Ciardi, David R; et al. (2017). "KELT-20b: A giant planet with a period of P~ 3.5 days transiting the V~ 7.6 early a star HD 185603". The Astronomical Journal. 154 (5): 194. arXiv:1707.01518. Bibcode:2017AJ....154..194L. doi:10.3847/1538-3881/aa8f95. S2CID 33060522.
  85. ^ a b Smalley, B; Anderson, D. R; Collier-Cameron, A; Doyle, A. P; Fumel, A; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P. F. L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smith, A. M. S; Southworth, J; Triaud, A. H. M. J; Udry, S; West, R. G (2012). "WASP-78b and WASP-79b: Two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus". Astronomy & Astrophysics. 547: A61. arXiv:1206.1177. Bibcode:2012A&A...547A..61S. doi:10.1051/0004-6361/201219731. S2CID 119233646.
  86. ^ Valsecchi, Francesca (2014), "Planets on the Edge", The Astrophysical Journal, 787 (1): L9, arXiv:1403.1870, Bibcode:2014ApJ...787L...9V, doi:10.1088/2041-8205/787/1/L9, S2CID 118451863
  87. ^ Smalley, B; Anderson, D. R; Collier-Cameron, A; Doyle, A. P; Fumel, A; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P. F. L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smith, A. M. S; Southworth, J; Triaud, A. H. M. J; Udry, S; West, R. G (2012). "WASP-78b and WASP-79b: Two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus". Astronomy & Astrophysics. 547: A61. arXiv:1206.1177. Bibcode:2012A&A...547A..61S. doi:10.1051/0004-6361/201219731. S2CID 119233646.
  88. ^ Rathcke, Alexander D.; MacDonald, Ryan J.; Barstow, Joanna K.; Goyal, Jayesh M.; Lopez-Morales, Mercedes; Mendonça, João M.; Sanz-Forcada, Jorge; Henry, Gregory W.; Sing, David K.; Alam, Munazza K.; Lewis, Nikole K.; Chubb, Katy L.; Taylor, Jake; Nikolov, Nikolay; Buchhave, Lars A. (2021), "HST PanCET Program: A Complete Near-UV to Infrared Transmission Spectrum for the Hot Jupiter WASP-79b", The Astronomical Journal, 162 (4): 138, arXiv:2104.10688, Bibcode:2021AJ....162..138R, doi:10.3847/1538-3881/ac0e99, S2CID 233347193
  89. ^ Smalley, B.; Anderson, D. R.; Collier-Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Segransan, D.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G.; Rathcke, Alexander D.; Sanz-Forcada, Jorge (2019). "Transmission Spectroscopy of WASP-79b from 0.6 to 5.0 μm". The Astronomical Journal. 159: 5. arXiv:1911.02051. doi:10.3847/1538-3881/ab5442. S2CID 207880528.
  90. ^ Skaf, Nour; Michelle Fabienne Bieger; Edwards, Billy; Changeat, Quentin; Morvan, Mario; Kiefer, Flavien; Blain, Doriann; Zingales, Tiziano; Poveda, Mathilde; Al-Refaie, Ahmed; Baeyens, Robin; Gressier, Amelie; Guilluy, Gloria; Adam Yassin Jaziri; Modirrousta-Galian, Darius; Mugnai, Lorenzo V.; Pluriel, William; Whiteford, Niall; Wright, Sam; Kai Hou Yip; Charnay, Benjamin; Leconte, Jeremy; Drossart, Pierre; Tsiaras, Angelos; Venot, Olivia; Waldmann, Ingo; Beaulieu, Jean-Philippe (2020). "ARES. II. Characterizing the Hot Jupiters WASP-127 b, WASP-79 b, and WASP-62b with the Hubble Space Telescope". The Astronomical Journal. 160 (3): 109. arXiv:2005.09615. Bibcode:2020AJ....160..109S. doi:10.3847/1538-3881/ab94a3. S2CID 218684714.
  91. ^ Foote, Trevor O.; Lewis, Nikole K.; Kilpatrick, Brian M.; Goyal, Jayesh M.; Bruno, Giovanni; Wakeford, Hannah R.; Robbins-Blanch, Nina; Kataria, Tiffany; MacDonald, Ryan J.; López-Morales, Mercedes; Sing, David K.; Mikal-Evans, Thomas; Bourrier, Vincent; Henry, Gregory; Buchhave, Lars A. (2022), "The Emission Spectrum of the Hot Jupiter WASP-79b from HST/WFC3", The Astronomical Journal, 163 (1): 7, arXiv:2107.14334, Bibcode:2022AJ....163....7F, doi:10.3847/1538-3881/ac2f4a, S2CID 236635028
  92. ^ Langeveld, Adam B.; Madhusudhan, Nikku; Cabot, Samuel H C. (2022), "A survey of sodium absorption in 10 giant exoplanets with high-resolution transmission spectroscopy", Monthly Notices of the Royal Astronomical Society, 514 (4): 5192–5213, arXiv:2205.01623, doi:10.1093/mnras/stac1539
  93. ^ Eastman, Jason D; Beatty, Thomas G; Siverd, Robert J; Antognini, Joseph M. O; Penny, Matthew T; Gonzales, Erica J; Crepp, Justin R; Howard, Andrew W; Avril, Ryan L; Bieryla, Allyson; Collins, Karen; Fulton, Benjamin J; Ge, Jian; Gregorio, Joao; Ma, Bo; Mellon, Samuel N; Oberst, Thomas E; Wang, Ji; Gaudi, B. Scott; Pepper, Joshua; Stassun, Keivan G; Buchhave, Lars A; Jensen, Eric L. N; Latham, David W; Berlind, Perry; Calkins, Michael L; Cargile, Phillip A; Colón, Knicole D; Dhital, Saurav; et al. (2016). "KELT-4Ab: An Inflated Hot Jupiter Transiting the Bright (V ˜ 10) Component of a Hierarchical Triple". The Astronomical Journal. 151 (2): 45. arXiv:1510.00015. Bibcode:2016AJ....151...45E. doi:10.3847/0004-6256/151/2/45. S2CID 17613522.
  94. ^ Fortney, Jonathan J; Demory, Brice-Olivier; Desert, Jean-Michel; Rowe, Jason; Marcy, Geoffrey W; Isaacson, Howard; Buchhave, Lars A; Ciardi, David; Gautier, Thomas N; Batalha, Natalie M; Caldwell, Douglas A; Bryson, Stephen T; Nutzman, Philip; Jenkins, Jon M; Howard, Andrew; Charbonneau, David; Knutson, Heather A; Howell, Steve B; Everett, Mark; Fressin, Francois; Deming, Drake; Borucki, William J; Brown, Timothy M; Ford, Eric B; Gilliland, Ronald L; Latham, David W; Miller, Neil; Seager, Sara; Fischer, Debra A; et al. (2011). "Discovery and Atmospheric Characterization of Giant Planet Kepler-12b: An Inflated Radius Outlier". The Astrophysical Journal Supplement Series. 197 (1): 9. arXiv:1109.1611. Bibcode:2011ApJS..197....9F. doi:10.1088/0067-0049/197/1/9. S2CID 688362.
  95. ^ Lafrenière, David; Jayawardhana, Ray; Van Kerkwijk, Marten H (2008). "Direct Imaging and Spectroscopy of a Planetary-Mass Candidate Companion to a Young Solar Analog". The Astrophysical Journal Letters. 689 (2): L153. arXiv:0809.1424. Bibcode:2008ApJ...689L.153L. doi:10.1086/595870. S2CID 15685566.
  96. ^ Fazekas, Andrew (30 June 2010). ""First" Picture of Planet Orbiting Sunlike Star Confirmed". National Geographic. Archived from the original on 3 July 2010. Retrieved 1 July 2010.
  97. ^ Zhou, Yifan; Sanghi, Yaniket; Bowler, Brendan P.; Wu, Ya-Lin; Close, Laird M.; Long, Feng; Ward-Duong, Kimberly; Zhu, Zhaohuan; Kraus, Adam L.; Follette, Katherine B.; Bae, Jaehan (9 July 2022). "HST/WFC3 Hα Direct-imaging Detection of a Pointlike Source in the Disk Cavity of AB Aur". The Astrophysical Journal Letters. 934 (1): 8. arXiv:2207.06525. Bibcode:2022ApJ...934L..13Z. doi:10.3847/2041-8213/ac7fef. ISSN 2041-8213. S2CID 251064702.
  98. ^ a b c Currie, Thayne; Lawson, Kellen; Schneider, Glenn; Lyra, Wladimir; Wisniewski, John; Grady, Carol; Guyon, Olivier; Tamura, Motohide; Kotani, Takayuki; Kawahara, Hajime; Brandt, Timothy; Uyama, Taichi; Muto, Takayuki; Dong, Ruobing; Kudo, Tomoyuki (2022-04-04). "Images of embedded Jovian planet formation at a wide separation around AB Aurigae". Nature Astronomy. 6 (6): 751–759. arXiv:2204.00633. Bibcode:2022NatAs...6..751C. doi:10.1038/s41550-022-01634-x. hdl:1887/3561800. ISSN 2397-3366.
  99. ^ Rodríguez, Luis F.; Zapata, Luis A.; Dzib, Sergio A.; Ortiz-León, Gisela N.; Loinard, Laurent; Macías, Enrique; Anglada, Guillem (2014-09-09). "An Ionized Outflow from Ab Aur, A Herbig Ae Star with a Transitional Disk". The Astrophysical Journal. 793 (1): L21. arXiv:1408.7068. Bibcode:2014ApJ...793L..21R. doi:10.1088/2041-8205/793/1/L21. ISSN 2041-8213.
  100. ^ Zhou, Yifan; Sanghi, Aniket; Bowler, Brendan P.; Wu, Ya-Lin; Close, Laird M.; Long, Feng; Ward-Duong, Kimberly; Zhu, Zhaohuan; Kraus, Adam L.; Follette, Katherine B.; Bae, Jaehan (2022-07-01). "HST/WFC3 Hα Direct-imaging Detection of a Pointlike Source in the Disk Cavity of AB Aur". The Astrophysical Journal Letters. 934 (1): L13. arXiv:2308.16223. Bibcode:2023AJ....166..220Z. doi:10.3847/2041-8213/ac7fef. ISSN 2041-8205.
  101. ^ Zhou, Yifan; Bowler, Brendan P.; Yang, Haifeng; Sanghi, Aniket; Herczeg, Gregory J.; Kraus, Adam L.; Bae, Jaehan; Long, Feng; Follette, Katherine B.; Ward-Duong, Kimberly; Zhu, Zhaohuan; Biddle, Lauren; Close, Laird M.; Jiang, Lillian Yushu; Wu, Ya-Lin (2023-12-01). "UV-optical Emission of AB Aur b Is Consistent with Scattered Stellar Light". The Astronomical Journal. 166 (6): 220. arXiv:2308.16223. Bibcode:2023AJ....166..220Z. doi:10.3847/1538-3881/acf9ec. ISSN 0004-6256.
  102. ^ Biddle, Lauren I.; Bowler, Brendan P.; Zhou, Yifan; Franson, Kyle; Zhang, Zhoujian (2024-04-01). "Deep Paβ Imaging of the Candidate Accreting Protoplanet AB Aur b". The Astronomical Journal. 167 (4): 172. arXiv:2402.12601. Bibcode:2024AJ....167..172B. doi:10.3847/1538-3881/ad2a52. ISSN 0004-6256.
  103. ^ Palma-Bifani, P.; et al. (2023), "Peering into the young planetary system AB Pic", Astronomy & Astrophysics, 670: A90, arXiv:2211.01474, doi:10.1051/0004-6361/202244294, S2CID 253265148
  104. ^ A companion to AB Pic at the planet/brown dwarf boundary, G. Chauvin, A.-M. Lagrange, B. Zuckerman, C. Dumas, D. Mouillet, I. Song, J.-L. Beuzit, P. Lowrance, and M. S. Bessell, Astronomy and Astrophysics 438, #3 (August 2005), pp. L29–L32, Bibcode:2005A&A...438L..29C, doi:10.1051/0004-6361:200500111, arXiv:astro-ph/0504658.
  105. ^ Homogeneous comparison of directly detected planet candidates: GQ Lup, 2M1207, AB Pic, Ralph Neuhaeuser, ESO Workshop Proceedings on Multiple Stars, Bibcode:2005astro.ph..9906N, arXiv:astro-ph/0509906.
  106. ^ Palma-Bifani, P.; et al. (2023), "Peering into the young planetary system AB Pic", Astronomy & Astrophysics, 670: A90, arXiv:2211.01474, doi:10.1051/0004-6361/202244294, S2CID 253265148
  107. ^ Esteves, Lisa J; De Mooij, Ernst J. W; Jayawardhana, Ray (2015). "Changing Phases of Alien Worlds: Probing Atmospheres of Kepler Planets with High-precision Photometry". The Astrophysical Journal. 804 (2): 150. arXiv:1407.2245. Bibcode:2015ApJ...804..150E. doi:10.1088/0004-637X/804/2/150. S2CID 117798959.
  108. ^ Batalha, Natalie M; Rowe, Jason F; Bryson, Stephen T; Barclay, Thomas; Burke, Christopher J; Caldwell, Douglas A; Christiansen, Jessie L; Mullally, Fergal; Thompson, Susan E; Brown, Timothy M; Dupree, Andrea K; Fabrycky, Daniel C; Ford, Eric B; Fortney, Jonathan J; Gilliland, Ronald L; Isaacson, Howard; Latham, David W; Marcy, Geoffrey W; Quinn, Samuel; Ragozzine, Darin; Shporer, Avi; Borucki, William J; Ciardi, David R; Gautier III, Thomas N; Haas, Michael R; Jenkins, Jon M; Koch, David G; Lissauer, Jack J; Rapin, William; et al. (2012). "Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data". The Astrophysical Journal Supplement Series. 204 (2): 24. arXiv:1202.5852. Bibcode:2013ApJS..204...24B. doi:10.1088/0067-0049/204/2/24. S2CID 19023502.
  109. ^ Kervella, P.; Thévenin, F.; Lovis, C. (2017). "Proxima's orbit around α Centauri". Astronomy & Astrophysics. 598: L7. arXiv:1611.03495. Bibcode:2017A&A...598L...7K. doi:10.1051/0004-6361/201629930. ISSN 0004-6361. S2CID 50867264. Separation: 3.1, left column of page 3; Orbital period and epoch of periastron: Table 3, right column of page 3.
  110. ^ Kervella, P.; Thévenin, F.; Lovis, C. (January 2017). "Proxima's orbit around α Centauri". Astronomy & Astrophysics. 598: L7. arXiv:1611.03495. Bibcode:2017A&A...598L...7K. doi:10.1051/0004-6361/201629930. S2CID 50867264.
  111. ^ Latham, David W.; Borucki, William J.; Koch, David G.; Brown, Timothy M.; Buchhave, Lars A.; Basri, Gibor; Batalha, Natalie M.; Caldwell, Douglas A.; Cochran, William D.; Dunham, Edward W.; Fűrész, Gabor; Gautier, Thomas N.; Geary, John C.; Gilliland, Ronald L.; Howell, Steve B. (2010-04-20). "Kepler-7b: A Transiting Planet With Unusually Low Density". The Astrophysical Journal. 713 (2): L140–L144. arXiv:1001.0190. Bibcode:2010ApJ...713L.140L. doi:10.1088/2041-8205/713/2/L140. ISSN 2041-8205.
  112. ^ Chilcote, Jeffrey; Pueyo, Laurent; De Rosa, Robert J.; Vargas, Jeffrey; Macintosh, Bruce; Bailey, Vanessa P.; Barman, Travis; Bauman, Brian; Bruzzone, Sebastian; Bulger, Joanna; Burrows, Adam S.; Cardwell, Andrew; Chen, Christine H.; Cotten, Tara; Dillon, Daren (2017-04-01). "1 to 2.4 micron Near-IR spectrum of the Giant Planet $\beta$ Pictoris b obtained with the Gemini Planet Imager". The Astronomical Journal. 153 (4): 182. arXiv:1703.00011. doi:10.3847/1538-3881/aa63e9. ISSN 0004-6256.
  113. ^ Delrez, L; Van Grootel, V; Anderson, D. R; Collier-Cameron, A; Doyle, A. P; Fumel, A; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Neveu-VanMalle, M; Maxted, P. F. L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smalley, B; Smith, A. M. S; Southworth, J; Triaud, A. H. M. J; Udry, S; West, R. G (2013). "Transiting planets from WASP-South, Euler and TRAPPIST: WASP-68 b, WASP-73 b and WASP-88 b, three hot Jupiters transiting evolved solar-type stars". Astronomy & Astrophysics. 563: A143. arXiv:1312.1827. Bibcode:2014A&A...563A.143D. doi:10.1051/0004-6361/201323204. S2CID 54846964.
  114. ^ Sanghi, Aniket; Liu, Michael C.; Best, William M.; Dupuy, Trent J.; Siverd, Robert J.; Zhang, Zhoujian; Hurt, Spencer A.; Magnier, Eugene A.; Aller, Kimberly M.; Deacon, Niall R. (6 September 2023). "The Hawaii Infrared Parallax Program. VI. The Fundamental Properties of 1000+ Ultracool Dwarfs and Planetary-mass Objects Using Optical to Mid-IR SEDs and Comparison to BT-Settl and ATMO 2020 Model Atmospheres". arXiv:2309.03082 [astro-ph.SR].
  115. ^ Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R. (June 2017). "The GAPS Programme with HARPS-N at TNG: XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets⋆". Astronomy & Astrophysics. 602: A107. arXiv:1704.00373. Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. ISSN 0004-6361.
  116. ^ Janson, M.; Bergfors, C.; Goto, M.; Brandner, W.; Lafreniere, D. (2010-02-10). "Spatially resolved spectroscopy of the exoplanet HR 8799 c". The Astrophysical Journal. 710 (1): L35–L38. arXiv:1001.2017. Bibcode:2010ApJ...710L..35J. doi:10.1088/2041-8205/710/1/L35. ISSN 2041-8205. S2CID 9159181.
  117. ^ Daemgen, S.; Hormuth, F.; Brandner, W.; Bergfors, C.; Janson, M.; Hippler, S.; Henning, T. (May 2009). "Binarity of transit host stars: Implications for planetary parameters". Astronomy & Astrophysics. 498 (2): 567–574. arXiv:0902.2179. Bibcode:2009A&A...498..567D. doi:10.1051/0004-6361/200810988. ISSN 0004-6361.
  118. ^ a b Marois, C.; Macintosh, B.; Barman, T.; Zuckerman, B.; Song, I.; Patience, J.; Lafreniere, D.; Doyon, R. (2008-11-28). "Direct Imaging of Multiple Planets Orbiting the Star HR 8799". Science. 322 (5906): 1348–1352. arXiv:0811.2606. Bibcode:2008Sci...322.1348M. doi:10.1126/science.1166585. ISSN 0036-8075. PMID 19008415. S2CID 206516630.
  119. ^ Lacour, S.; Nowak, M.; Wang, J.; Pfuhl, O.; Eisenhauer, F.; Abuter, R.; Amorim, A.; Anugu, N.; Benisty, M.; Berger, J. P.; Beust, H.; Blind, N.; Bonnefoy, M.; Bonnet, H.; Bourget, P. (March 2019). "First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e". Astronomy & Astrophysics. 623: L11. arXiv:1903.11903. Bibcode:2019A&A...623L..11G. doi:10.1051/0004-6361/201935253. ISSN 0004-6361. S2CID 85542913.
  120. ^ a b Luhman, K. L.; Tremblin, P.; Birkmann, S. M.; Manjavacas, E.; Valenti, J.; Alves de Oliveira, C.; Beck, T. L.; Giardino, G.; Lützgendorf, N.; Rauscher, B. J.; Sirianni, M. (2023-06-01). "JWST/NIRSpec Observations of the Planetary Mass Companion TWA 27B*". The Astrophysical Journal Letters. 949 (2): L36. arXiv:2305.18603. Bibcode:2023ApJ...949L..36L. doi:10.3847/2041-8213/acd635. ISSN 2041-8205.
  121. ^ a b Carmichael, Theron W (2023-01-17). "Improved radius determinations for the transiting brown dwarf population in the era of Gaia and TESS". Monthly Notices of the Royal Astronomical Society. 519 (4): 5177–5190. arXiv:2212.02502. Bibcode:2023MNRAS.519.5177C. doi:10.1093/mnras/stac3720. ISSN 0035-8711.
  122. ^ a b Deleuil, M.; et al. (2008). "Transiting exoplanets from the CoRoT space mission. VI. CoRoT-Exo-3b: the first secure inhabitant of the brown-dwarf desert". Astronomy and Astrophysics. 491 (3): 889–897. arXiv:0810.0919. Bibcode:2008A&A...491..889D. doi:10.1051/0004-6361:200810625. S2CID 8944836.
  123. ^ "Definition of a "Planet"". Working Group on Extrasolar Planets (WGESP) of the International Astronomical Union. Archived from the original on 2012-07-02. Retrieved 2009-03-27.
  124. ^ Mordasini, C.; et al. (2007). "Giant Planet Formation by Core Accretion". arXiv:0710.5667v1 [astro-ph].
  125. ^ Matthews, E. C.; Carter, A. L.; et al. (July 2024). "A temperate super-Jupiter imaged with JWST in the mid-infrared". Nature. doi:10.1038/s41586-024-07837-8. PMID 39048015.
  126. ^ Jerry Coffey (8 July 2008). "What is the Biggest Planet in the Solar System?". Universe Today. Archived from the original on 16 November 2014. Retrieved 7 November 2014.

Leave a Reply