Terpene

In mathematics, particularly functional analysis, James' theorem, named for Robert C. James, states that a Banach space is reflexive if and only if every continuous linear functional's norm on attains its supremum on the closed unit ball in

A stronger version of the theorem states that a weakly closed subset of a Banach space is weakly compact if and only if the dual norm each continuous linear functional on attains a maximum on

The hypothesis of completeness in the theorem cannot be dropped.[1]

Statements[edit]

The space considered can be a real or complex Banach space. Its continuous dual space is denoted by The topological dual of -Banach space deduced from by any restriction scalar will be denoted (It is of interest only if is a complex space because if is a -space then )

James compactness criterion — Let be a Banach space and a weakly closed nonempty subset of The following conditions are equivalent:

  • is weakly compact.
  • For every there exists an element such that
  • For any there exists an element such that
  • For any there exists an element such that

A Banach space being reflexive if and only if its closed unit ball is weakly compact one deduces from this, since the norm of a continuous linear form is the upper bound of its modulus on this ball:

James' theorem — A Banach space is reflexive if and only if for all there exists an element of norm such that

History[edit]

Historically, these sentences were proved in reverse order. In 1957, James had proved the reflexivity criterion for separable Banach spaces[2] and 1964 for general Banach spaces.[3] Since the reflexivity is equivalent to the weak compactness of the unit sphere, Victor L. Klee reformulated this as a compactness criterion for the unit sphere in 1962 and assumes that this criterion characterizes any weakly compact quantities.[4] This was then actually proved by James in 1964.[5]

See also[edit]

Notes[edit]

References[edit]

Leave a Reply