Terpene

Solar eclipse of October 31, 1902
Map
Type of eclipse
NaturePartial
Gamma1.1556
Magnitude0.696
Maximum eclipse
Coordinates70°48′N 100°48′E / 70.8°N 100.8°E / 70.8; 100.8
Times (UTC)
Greatest eclipse8:00:18
References
Saros151 (8 of 72)
Catalog # (SE5000)9287

A partial solar eclipse occurred at the Moon's ascending node of orbit on Friday, October 31, 1902,[1] with a magnitude of 0.696. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

[edit]

Eclipses in 1902

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 151

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 1898–1902

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[2]

The partial solar eclipse on April 8, 1902 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1898 to 1902
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
111 December 13, 1898

Partial
−1.5252 116 June 8, 1899

Partial
1.2089
121 December 3, 1899

Annular
−0.9061 126 May 28, 1900

Total
0.3943
131 November 22, 1900

Annular
−0.2245 136 May 18, 1901

Total
−0.3626
141 November 11, 1901

Annular
0.4758 146 May 7, 1902

Partial
−1.0831
151 October 31, 1902

Partial
1.1556

Saros 151

[edit]

This eclipse is a part of Saros series 151, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on August 14, 1776. It contains annular eclipses from February 28, 2101 through April 23, 2191; a hybrid eclipse on May 5, 2209; and total eclipses from May 16, 2227 through July 6, 2912. The series ends at member 72 as a partial eclipse on October 1, 3056. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 19 at 2 minutes, 44 seconds on February 28, 2101, and the longest duration of totality will be produced by member 60 at 5 minutes, 41 seconds on May 22, 2840. All eclipses in this series occur at the Moon’s ascending node of orbit.[3]

Series members 3–24 occur between 1801 and 2200:
3 4 5

September 5, 1812

September 17, 1830

September 27, 1848
6 7 8

October 8, 1866

October 19, 1884

October 31, 1902
9 10 11

November 10, 1920

November 21, 1938

December 2, 1956
12 13 14

December 13, 1974

December 24, 1992

January 4, 2011
15 16 17

January 14, 2029

January 26, 2047

February 5, 2065
18 19 20

February 16, 2083

February 28, 2101

March 11, 2119
21 22 23

March 21, 2137

April 2, 2155

April 12, 2173
24

April 23, 2191

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

24 eclipse events between March 25, 1819 and August 20, 1906
March 25–26 January 11–12 October 30–31 August 18–20 June 6–7
107 109 111 113 115

March 25, 1819

January 12, 1823

October 31, 1826

August 18, 1830

June 7, 1834
117 119 121 123 125

March 25, 1838

January 11, 1842

October 30, 1845

August 18, 1849

June 6, 1853
127 129 131 133 135

March 25, 1857

January 11, 1861

October 30, 1864

August 18, 1868

June 6, 1872
137 139 141 143 145

March 25, 1876

January 11, 1880

October 30, 1883

August 19, 1887

June 6, 1891
147 149 151 153

March 26, 1895

January 11, 1899

October 31, 1902

August 20, 1906

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 1946

August 5, 1804
(Saros 142)

July 6, 1815
(Saros 143)

June 5, 1826
(Saros 144)

May 4, 1837
(Saros 145)

April 3, 1848
(Saros 146)

March 4, 1859
(Saros 147)

January 31, 1870
(Saros 148)

December 31, 1880
(Saros 149)

December 1, 1891
(Saros 150)

October 31, 1902
(Saros 151)

September 30, 1913
(Saros 152)

August 30, 1924
(Saros 153)

July 30, 1935
(Saros 154)

June 29, 1946
(Saros 155)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

December 30, 1815
(Saros 148)

December 9, 1844
(Saros 149)

November 20, 1873
(Saros 150)

October 31, 1902
(Saros 151)

October 11, 1931
(Saros 152)

September 20, 1960
(Saros 153)

August 31, 1989
(Saros 154)

August 11, 2018
(Saros 155)

July 22, 2047
(Saros 156)

July 1, 2076
(Saros 157)

June 12, 2105
(Saros 158)

May 23, 2134
(Saros 159)

April 12, 2192
(Saros 161)

Notes

[edit]
  1. ^ "Eclipse". The Bourbon News. Paris, Kentucky. 1902-10-31. p. 5. Retrieved 2023-10-27 – via Newspapers.com.
  2. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  3. ^ "NASA - Catalog of Solar Eclipses of Saros 151". eclipse.gsfc.nasa.gov.

References

[edit]


[edit]

Leave a Reply