Cannabis Sativa

Cyanopeptolins (CPs) are a class of oligopeptides produced by Microcystis and Planktothrix algae strains, and can be neurotoxic.[1][2][3] The production of cyanopeptolins occurs through nonribosomal peptides synthases (NRPS).[4]

Chemistry[edit]

CPs are, in general, a six-residue peptide formed into a ring by a beta-lactone bridge,[5] making them chemically depsipeptides (peptidolactones). The first position is usually threonine, which links to one or two residues via an ester bound on the beta-hydroxyl group; the third position is conserved to be 3-amino-6-hydroxy-2-piperidone (Ahp) or a derivative. All other positions are highly variable.[6]

There is not a single, unified nomenclature, for CPs. Names such as CP1020[7] and CP1138 refer to the molar mass. Others, such as aeruginopeptins, micropeptins, microcystilide, nostopeptins, and oscillapeptins,[6] refer to the organism the substance is originally found in.

Factors affecting production[edit]

Increased water temperatures, because of climate change and eutrophication of inland waters promote blooms of cyanobacteria, potentially threaten water contamination by the production of the toxic cyanopeptolin CP1020.[1]

Biological activity[edit]

Most CPs are serine protease inhibitors.[6]

Cyanopeptolin CP1020 exposure in zebrafish affected pathways related to DNA damage, the circadian rhythm and response to light.[1]

Evolutionary history[edit]

CPs are probably very ancient: the cyanobacterial genera that produce CPs appear to have inherited the key modules vertically and not horizontally.[8]

See also[edit]

References[edit]

  1. ^ a b c Susanne Faltermann; Sara Zucchi; Esther Kohler; Judith F. Blom; Jakob Pernthaler; Karl Fent (April 2014). "Molecular effects of the cyanobacterial toxin cyanopeptolin (CP1020) occurring in algal blooms: Global transcriptome analysis in zebrafish embryos" (PDF). Aquatic Toxicology. 149: 33–39. doi:10.1016/j.aquatox.2014.01.018. PMID 24561424.
  2. ^ Karl Gademann; Cyril Portmann; Judith F. Blom; Michael Zeder; Friedrich Jüttner (2010). "Multiple Toxin Production in the Cyanobacterium Microcystis: Isolation of the Toxic Protease Inhibitor Cyanopeptolin 1020" (PDF). J. Nat. Prod. 73 (5): 980–984. doi:10.1021/np900818c. PMID 20405925. Archived from the original (PDF) on 2022-02-02. Retrieved 2019-07-14.
  3. ^ Martin Welker; Hans Von Döhren (2006). "Cyanobacterial peptides – Nature's own combinatorial biosynthesis". FEMS Microbiology Reviews. 30 (4): 530–563. doi:10.1111/j.1574-6976.2006.00022.x. PMID 16774586.
  4. ^ Ramsy Agha; Samuel Cirés; Lars Wörmer; Antonio Quesada (2013). "Limited Stability of Microcystins in Oligopeptide Compositions of Microcystis aeruginosa (Cyanobacteria): Implications in the Definition of Chemotypes". Toxins. 5 (6): 1089–1104. doi:10.3390/toxins5061089. PMC 3717771. PMID 23744054.
  5. ^ Janssen, Elisabeth M.-L. (March 2019). "Cyanobacterial peptides beyond microcystins – A review on co-occurrence, toxicity, and challenges for risk assessment". Water Research. 151: 488–499. doi:10.1016/j.watres.2018.12.048. PMID 30641464.
  6. ^ a b c Mazur-Marzec, Hanna; Fidor, Anna; Cegłowska, Marta; Wieczerzak, Ewa; Kropidłowska, Magdalena; Goua, Marie; Macaskill, Jenny; Edwards, Christine (26 June 2018). "Cyanopeptolins with Trypsin and Chymotrypsin Inhibitory Activity from the Cyanobacterium Nostoc edaphicum CCNP1411". Marine Drugs. 16 (7): 220. doi:10.3390/md16070220. PMC 6070996. PMID 29949853.
  7. ^ "Cyanopeptolin CP1020". pubchem.ncbi.nlm.nih.gov.
  8. ^ Rounge, Trine B.; Rohrlack, Thomas; Tooming-Klunderud, Ave; Kristensen, Tom; Jakobsen, Kjetill S. (15 November 2007). "Comparison of Cyanopeptolin Genes in Planktothrix , Microcystis , and Anabaena Strains: Evidence for Independent Evolution within Each Genus". Applied and Environmental Microbiology. 73 (22): 7322–7330. Bibcode:2007ApEnM..73.7322R. doi:10.1128/AEM.01475-07. PMC 2168201. PMID 17921284.

External links[edit]

Leave a Reply