Cannabis Indica

Content deleted Content added
WAS 4.250 (talk | contribs)
→‎Spanish flu research: delete questionable material
128.143.185.174 (talk)
(5 intermediate revisions by 2 users not shown)
Line 18: Line 18:
In [[July 2004]], researchers led by H. Deng of the Harbin Veterinary Research Institute, [[Harbin]], China and Professor [[Robert Webster]] of the [[St Jude Children's Research Hospital]], [[Memphis, Tennessee]], reported results of experiments in which [[Mouse|mice]] had been exposed to 21 isolates of confirmed H5N1 strains obtained from ducks in China between 1999 and 2002. They found "a clear temporal pattern of progressively increasing pathogenicity". <ref>[http://www.pnas.org/cgi/content/abstract/0403212101v1 The evolution of H5N1 influenza viruses in ducks in southern China] by H. Chen, G. Deng, Z. Li, G. Tian, Y. Li, P. Jiao, L. Zhang, Z. Liu, R. G. Webster and K. Yu in ''[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]]'' (2004) volume 101, pages 10452-10457.</ref> Results reported by Dr. Webster in [[July 2005]] reveal further progression toward pathogenicity in mice and longer virus shedding by ducks.
In [[July 2004]], researchers led by H. Deng of the Harbin Veterinary Research Institute, [[Harbin]], China and Professor [[Robert Webster]] of the [[St Jude Children's Research Hospital]], [[Memphis, Tennessee]], reported results of experiments in which [[Mouse|mice]] had been exposed to 21 isolates of confirmed H5N1 strains obtained from ducks in China between 1999 and 2002. They found "a clear temporal pattern of progressively increasing pathogenicity". <ref>[http://www.pnas.org/cgi/content/abstract/0403212101v1 The evolution of H5N1 influenza viruses in ducks in southern China] by H. Chen, G. Deng, Z. Li, G. Tian, Y. Li, P. Jiao, L. Zhang, Z. Liu, R. G. Webster and K. Yu in ''[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]]'' (2004) volume 101, pages 10452-10457.</ref> Results reported by Dr. Webster in [[July 2005]] reveal further progression toward pathogenicity in mice and longer virus shedding by ducks.


Recent research of Taubenberger ''et al'' has suggested that the 1918 virus, like H5N1, could have arisen directly from an avian influenza virus. <ref>Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. Characterization of the 1918 influenza virus polymerase genes. Nature. [[October 6]], [[2005]];437(7060):889-893</ref> Other research by Tumpey and colleagues who reconstructed the H1N1 virus of 1918 came to the conclusion that it is was most notably the polymerase genes and the HA and NA genes that caused the extreme virulence of this virus. <ref>Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solorzano A, Swayne DE, Cox NJ, Katz JM, Taubenberger JK, Palese P, Garcia-Sastre A. Characterization of the reconstructed [[1918]] Spanish influenza pandemic virus. Science. [[October 7]], [[2005]];310(5745):77-80</ref> The sequences of the polymerase proteins (PA, PB1, and PB2) of the 1918 virus and subsequent human viruses differ by only 10 amino acids from the avian influenza viruses. Viruses with seven of the ten amino acids in the human influenza locations have already been identified in currently circulating H5N1. This has led some researchers to suggest that other mutations may surface and make the H5N1 virus capable of human-to-human transmission. Another important factor is the change of the HA protein to a binding preference for alpha 2,6 sialic acid (the major form in the human respiratory tract). In avian virus the HA protein preferentially binds to alpha 2,3 sialic acid, which is the major form in the avian enteric tract. It has been shown that only a single amino acid change can result in the change of this binding preference. Altogether, only a handful of mutations may need to take place in order for H5N1 avian flu to become a pandemic virus like the one of 1918. However it is important to note that likelihood of mutation does not indicate the likelihood for the evolution of such a strain; since some of the necessary mutations may be constrained by [[stabilizing selection]].
Recent research of Taubenberger ''et al'' has suggested that the [[Spanish flu|1918 virus]], like H5N1, could have arisen directly from an avian influenza virus. <ref>Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. Characterization of the 1918 influenza virus polymerase genes. Nature. [[October 6]], [[2005]];437(7060):889-893</ref> However, researchers at University of Virginia and Australian National University have indicated problems in the Taubenberger ''et al.'' research <ref>Gibbs and Gibbs. [http://www.nature.com/nature/journal/v440/n7088/full/nature04823.html Was the 1918 pandemic caused by a bird flu?] Nature. [[April 27]], [[2006]];440:E8</ref><ref>Antonovics et al. [http://www.nature.com/nature/journal/v440/n7088/full/nature04824.html Was the 1918 flu avian in origin?] Nature. [[April 27]], [[2006]];440:E9</ref>. Their work shows there is not enough phylogenetic evidence to suggest [[Spanish flu|1918 virus]] could have arisen directly from an avian influenza virus. It should also be noted that earlier research by Fanning ''et al.'' suggests that the [[Spanish flu|1918 virus]] did not acquire its HA gene from an avian source <ref>Thomas G. Fanning, Richard D. Slemons, Ann H. Reid,Thomas A. Janczewski, James Dean, and Jeffery K. Taubenberger. 1917 Avian Influenza Virus Sequences Suggest that the 1918 Pandemic Virus Did Not Acquire Its Hemagglutinin Directly from Birds. Journal of Virology. [[August]], [[2002]];76:15 pages 7860-7862</ref>. Other research by Tumpey and colleagues who reconstructed the H1N1 virus of 1918 came to the conclusion that it is was most notably the polymerase genes and the HA and NA genes that caused the extreme virulence of this virus. <ref>Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solorzano A, Swayne DE, Cox NJ, Katz JM, Taubenberger JK, Palese P, Garcia-Sastre A. Characterization of the reconstructed [[1918]] Spanish influenza pandemic virus. Science. [[October 7]], [[2005]];310(5745):77-80</ref> The sequences of the polymerase proteins (PA, PB1, and PB2) of the 1918 virus and subsequent human viruses differ by only 10 amino acids from the avian influenza viruses. Viruses with seven of the ten amino acids in the human influenza locations have already been identified in currently circulating H5N1. This has led some researchers to suggest that other mutations may surface and make the H5N1 virus capable of human-to-human transmission. Another important factor is the change of the HA protein to a binding preference for alpha 2,6 sialic acid (the major form in the human respiratory tract). In avian virus the HA protein preferentially binds to alpha 2,3 sialic acid, which is the major form in the avian enteric tract. It has been shown that only a single amino acid change can result in the change of this binding preference. Altogether, only a handful of mutations may need to take place in order for H5N1 avian flu to become a pandemic virus like the one of 1918. However it is important to note that likelihood of mutation does not indicate the likelihood for the evolution of such a strain; since some of the necessary mutations may be constrained by [[stabilizing selection]].


===Blood plasma as an effective treatment===
===Blood plasma as an effective treatment===

Revision as of 23:07, 16 November 2006

Spanish flu research

One theory is that the virus strain originated at Fort Riley, Kansas, by two genetic mechanisms — genetic drift and antigenic shift — in viruses in poultry and swine which the fort bred for local consumption. But evidence from a recent reconstruction of the virus suggests that it jumped directly from birds to humans, without traveling through swine.[1]

In February 1998, a team led by Jeffery Taubenberger of the US Armed Forces Institute of Pathology (AFIP) recovered samples of the 1918 influenza from the frozen corpse of a Native Alaskan woman buried for nearly eight decades in permafrost near Brevig Mission, Alaska. Brevig Mission lost approximately 85% of its population to the Spanish flu in November 1918. One of the four recovered samples contained viable genetic material of the virus. This sample provided scientists a first-hand opportunity to study the virus, which was inactivated with guanidinium thiocyanate before transport. This sample and others found in AFIP archives allowed researchers to completely analyze the critical gene structures of the 1918 virus. "We have now identified three cases: the Brevig Mission case and two archival cases that represent the only known sources of genetic material of the 1918 influenza virus", said Taubenberger, chief of AFIP's molecular pathology division and principal investigator on the project.

Negative stained transmission electron micrograph (TEM) of recreated 1918 influenza virus.

The February 6 2004 edition of Science magazine reported that two research teams, one led by Sir John Skehel, director of the National Institute for Medical Research in London, another by Professor Ian Wilson of The Scripps Research Institute in San Diego, had managed to synthesize the hemagglutinin protein responsible for the 1918 outbreak of Spanish Flu. They did this by piecing together DNA from a lung sample from an Inuit woman buried in the Alaskan tundra and a number of preserved samples from American soldiers of the First World War. The teams had analyzed the structure of the gene and discovered how subtle alterations to the shape of a protein molecule had allowed it to move from birds to humans with such devastating effects.

On October 5, 2005, researchers announced that the genetic sequence of the 1918 flu strain had been reconstructed using historic tissue samples. [2]

Influenza viruses have a relatively high mutation rate that is characteristic of RNA viruses. The H5N1 virus has mutated into a variety of types with differing pathogenic profiles; some pathogenic to one species but not others, some pathogenic to multiple species. [3] The ability of various influenza strains to show species-selectivity is largely due to variation in the hemagglutinin genes. Genetic mutations in the hemagglutinin gene that cause single amino acid substitutions can significantly alter the ability of viral hemagglutinin proteins to bind to receptors on the surface of host cells. Such mutations in avian H5N1 viruses can change virus strains from being inefficient at infecting human cells to being as efficient in causing human infections as more common human influenza virus types. [4] This doesn't mean one amino acid substitution can cause a pandemic but it does mean one amino acid substitution can cause an avian flu virus that is not pathogenic in humans to become pathogenic in humans.

In July 2004, researchers led by H. Deng of the Harbin Veterinary Research Institute, Harbin, China and Professor Robert Webster of the St Jude Children's Research Hospital, Memphis, Tennessee, reported results of experiments in which mice had been exposed to 21 isolates of confirmed H5N1 strains obtained from ducks in China between 1999 and 2002. They found "a clear temporal pattern of progressively increasing pathogenicity". [5] Results reported by Dr. Webster in July 2005 reveal further progression toward pathogenicity in mice and longer virus shedding by ducks.

Recent research of Taubenberger et al has suggested that the 1918 virus, like H5N1, could have arisen directly from an avian influenza virus. [6] However, researchers at University of Virginia and Australian National University have indicated problems in the Taubenberger et al. research [7][8]. Their work shows there is not enough phylogenetic evidence to suggest 1918 virus could have arisen directly from an avian influenza virus. It should also be noted that earlier research by Fanning et al. suggests that the 1918 virus did not acquire its HA gene from an avian source [9]. Other research by Tumpey and colleagues who reconstructed the H1N1 virus of 1918 came to the conclusion that it is was most notably the polymerase genes and the HA and NA genes that caused the extreme virulence of this virus. [10] The sequences of the polymerase proteins (PA, PB1, and PB2) of the 1918 virus and subsequent human viruses differ by only 10 amino acids from the avian influenza viruses. Viruses with seven of the ten amino acids in the human influenza locations have already been identified in currently circulating H5N1. This has led some researchers to suggest that other mutations may surface and make the H5N1 virus capable of human-to-human transmission. Another important factor is the change of the HA protein to a binding preference for alpha 2,6 sialic acid (the major form in the human respiratory tract). In avian virus the HA protein preferentially binds to alpha 2,3 sialic acid, which is the major form in the avian enteric tract. It has been shown that only a single amino acid change can result in the change of this binding preference. Altogether, only a handful of mutations may need to take place in order for H5N1 avian flu to become a pandemic virus like the one of 1918. However it is important to note that likelihood of mutation does not indicate the likelihood for the evolution of such a strain; since some of the necessary mutations may be constrained by stabilizing selection.

Blood plasma as an effective treatment

When the next pandemic strikes, US Navy researchers suggest a treatment to blunt the effects of the flu, used during the deadly pandemic of 1918. Some military doctors injected severely afflicted patients with blood or blood plasma from people who had recovered from the flu. Data collected during that time indicate that the blood-injection treatment reduced mortality rates by as much as 50 percent. Navy researchers may launch a test to see if the 1918 treatment will work against deadly Asian bird flu. Human H5N1 plasma may be an effective, timely, and widely available treatment for the next flu pandemic. A new international study using modern data collection methods, would be a difficult, slow process. But many flu experts, citing the months-long wait for a vaccine for the next pandemic, are of the opinion that the 1918 method is something to consider.[11]

In the world wide Spanish flu pandemic of 1918, "[p]hysicians tried everything they knew, everything they had ever heard of, from the ancient art of bleeding patients, to administering oxygen, to developing new vaccines and sera (chiefly against what we now call Hemophilus influenzae—a name derived from the fact that it was originally considered the etiological agent—and several types of pneumococci). Only one therapeutic measure, transfusing blood from recovered patients to new victims, showed any hint of success."[12]

Sources and notes

  1. ^ Sometimes a virus contains both avian adapted genes and human adapted genes. Both the H2N2 and H3N2 pandemic strains contained avian flu virus RNA segments. "While the pandemic human influenza viruses of 1957 (H2N2) and 1968 (H3N2) clearly arose through reassortment between human and avian viruses, the influenza virus causing the 'Spanish flu' in 1918 appears to be entirely derived from an avian source (Belshe 2005)." (from Chapter Two : Avian Influenza by Timm C. Harder and Ortrud Werner, an excellent free on-line Book called Influenza Report 2006 which is a medical textbook that provides a comprehensive overview of epidemic and pandemic influenza.)
  2. ^ Special report at Nature News: The 1918 flu virus is resurrected, Published online: 5 October 2005; doi:10.1038/437794a. See: "Characterization of the 1918 influenza virus polymerase genes" by Jeffery K. Taubenberger, Ann H. Reid, Raina M. Lourens, Ruixue Wang, Guozhong Jin and Thomas G. Fanning in Nature (2005) volume 437 pages 889–893 doi:10.1038/nature04230. Also: "Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus" by Terrence M. Tumpey, Christopher F. Basler, Patricia V. Aguilar, Hui Zeng, Alicia Solórzano, David E. Swayne, Nancy J. Cox, Jacqueline M. Katz, Jeffery K. Taubenberger, Peter Palese and Adolfo García-Sastre in Science (2005) volume 310 pages 77–80 doi:10.1126/science.1119392.
  3. ^ New genotype of avian influenza H5N1 viruses isolated from tree sparrows in China by Z. Kou, F. M. Lei, J. Yu, Z. J. Fan, Z. H. Yin, C. X. Jia, K. J. Xiong, Y. H. Sun, X. W. Zhang, X. M. Wu, X. B. Gao and T. X. Li in Journal of Virology (2005) volume 79, pages 15460-15466.
  4. ^ Evolution of the receptor binding phenotype of influenza A (H5) viruses by A. Gambaryan, A. Tuzikov, G. Pazynina, N. Bovin, A. Balish and A. Klimov in Virology (2005) electronic release on October 11 ahead of print publication.
  5. ^ The evolution of H5N1 influenza viruses in ducks in southern China by H. Chen, G. Deng, Z. Li, G. Tian, Y. Li, P. Jiao, L. Zhang, Z. Liu, R. G. Webster and K. Yu in Proceedings of the National Academy of Sciences of the United States of America (2004) volume 101, pages 10452-10457.
  6. ^ Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. Characterization of the 1918 influenza virus polymerase genes. Nature. October 6, 2005;437(7060):889-893
  7. ^ Gibbs and Gibbs. Was the 1918 pandemic caused by a bird flu? Nature. April 27, 2006;440:E8
  8. ^ Antonovics et al. Was the 1918 flu avian in origin? Nature. April 27, 2006;440:E9
  9. ^ Thomas G. Fanning, Richard D. Slemons, Ann H. Reid,Thomas A. Janczewski, James Dean, and Jeffery K. Taubenberger. 1917 Avian Influenza Virus Sequences Suggest that the 1918 Pandemic Virus Did Not Acquire Its Hemagglutinin Directly from Birds. Journal of Virology. August, 2002;76:15 pages 7860-7862
  10. ^ Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solorzano A, Swayne DE, Cox NJ, Katz JM, Taubenberger JK, Palese P, Garcia-Sastre A. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science. October 7, 2005;310(5745):77-80
  11. ^ npr.org history.navy.mil
  12. ^ The Threat of Pandemic Influenza: Are We Ready? Workshop Summary (2005) (free online book) page 62

Leave a Reply