Cannabis Indica

Content deleted Content added
Citation bot (talk | contribs)
Add: s2cid, pmc. Removed proxy/dead URL that duplicated identifier. Removed access-date with no URL. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 691/3500
WikiCleanerBot (talk | contribs)
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation)
(18 intermediate revisions by 10 users not shown)
Line 1: Line 1:
{{Sex differences|File=Brain stem normal human.svg}}
{{Sex differences|File=Brain stem normal human.svg}}
'''Sex differences in medicine''' include sex-specific [[diseases]] or conditions which occur only in people of one [[sex]] due to underlying biological factors (for example, [[prostate cancer]] in males or [[uterine cancer]] in females); sex-related diseases, which are diseases that are more common to one sex (for example, [[breast cancer]] and [[systemic lupus erythematosus]] which occur predominantly in females);<ref name="Ngo">{{cite journal | vauthors = Ngo ST, Steyn FJ, McCombe PA | title = Gender differences in autoimmune disease | journal = Frontiers in Neuroendocrinology | volume = 35 | issue = 3 | pages = 347–369 | date = August 2014 | pmid = 24793874 | doi = 10.1016/j.yfrne.2014.04.004 | doi-access = free }}</ref> and diseases which occur at similar rates in males and females but manifest differently according to sex (for example, [[peripheral artery disease]]).<ref>{{cite journal | vauthors = Barochiner J, Aparicio LS, Waisman GD | title = Challenges associated with peripheral arterial disease in women | journal = Vascular Health and Risk Management | volume = 10 | pages = 115–128 | date = 2014 | pmid = 24648743 | pmc = 3956880 | doi = 10.2147/vhrm.s45181 }}</ref>
'''Sex differences in medicine''' include sex-specific [[diseases]] or conditions which occur only in people of one sex due to underlying biological factors (for example, [[prostate cancer]] in males or [[uterine cancer]] in females); sex-related diseases, which are diseases that are more common to one sex (for example, breast cancer and [[systemic lupus erythematosus]] which occur predominantly in females);<ref name="Ngo">{{cite journal | vauthors = Ngo ST, Steyn FJ, McCombe PA | title = Gender differences in autoimmune disease | journal = Frontiers in Neuroendocrinology | volume = 35 | issue = 3 | pages = 347–369 | date = August 2014 | pmid = 24793874 | doi = 10.1016/j.yfrne.2014.04.004 | doi-access = free }}</ref> and diseases which occur at similar rates in males and females but manifest differently according to sex (for example, [[peripheral artery disease]]).<ref>{{cite journal | vauthors = Barochiner J, Aparicio LS, Waisman GD | title = Challenges associated with peripheral arterial disease in women | journal = Vascular Health and Risk Management | volume = 10 | pages = 115–128 | date = 2014 | pmid = 24648743 | pmc = 3956880 | doi = 10.2147/vhrm.s45181 | doi-access = free }}</ref>


Sex differences should not be confused with [[gender]] differences. The US [[National Academy of Medicine]] recognizes sex differences as biological at the chromosomal and anatomical levels, whereas gender differences are based on self-representation and other factors including biology, environment and experience.<ref name="Oertelt-Prigione">{{cite book | veditors = Oertelt-Prigione S, Regitz-Zagrosek V |title=Sex and Gender Aspects in Clinical Medicine |date=2012 |publisher=Springer Science & Business Media |location=London, UK |isbn=978-1-4471-6002-1}}</ref><ref name="DoesSexMatter">{{cite book | author = Institute of Medicine (US) Committee on Understanding the Biology of Sex and Gender Differences. | title = Exploring the Biological Contributions to Human Health: Does Sex Matter? | veditors = Wizemann TM, Pardue ML | location = Washington (DC) | publisher = National Academies Press (| date = 2001 | pmid = 25057540 |url=https://www.nap.edu/read/10028/chapter/1 | isbn = 978-0-309-07281-6 }}</ref>
Sex differences should not be confused with [[gender]] differences. The US [[National Academy of Medicine]] recognizes sex differences as biological at the chromosomal and anatomical levels, whereas gender differences are based on self-representation and other factors including biology, environment and experience.<ref name="Oertelt-Prigione">{{cite book | veditors = Oertelt-Prigione S, Regitz-Zagrosek V |title=Sex and Gender Aspects in Clinical Medicine |date=2012 |publisher=Springer Science & Business Media |location=London, UK |isbn=978-1-4471-6002-1}}</ref><ref name="DoesSexMatter">{{cite book | author = Institute of Medicine (US) Committee on Understanding the Biology of Sex and Gender Differences. | title = Exploring the Biological Contributions to Human Health: Does Sex Matter? | veditors = Wizemann TM, Pardue ML | location = Washington (DC) | publisher = National Academies Press (| date = 2001 | pmid = 25057540 |url=https://www.nap.edu/read/10028/chapter/1 | isbn = 978-0-309-07281-6 }}</ref>
Line 8: Line 8:
[[pulmonary]]<ref name="Weatherald">{{cite journal | vauthors = Weatherald J, Riha RL, Humbert M | title = Sex and gender in lung health and disease: more than just Xs and Ys | journal = European Respiratory Review | volume = 30 | issue = 162 | pages = 210217 | date = December 2021 | pmid = 34750117 | doi = 10.1183/16000617.0217-2021 | pmc = 9488524 | s2cid = 243861859 | doi-access = free }}</ref>
[[pulmonary]]<ref name="Weatherald">{{cite journal | vauthors = Weatherald J, Riha RL, Humbert M | title = Sex and gender in lung health and disease: more than just Xs and Ys | journal = European Respiratory Review | volume = 30 | issue = 162 | pages = 210217 | date = December 2021 | pmid = 34750117 | doi = 10.1183/16000617.0217-2021 | pmc = 9488524 | s2cid = 243861859 | doi-access = free }}</ref>
and [[autoimmune system]]s,<ref name="Rose"/><ref name="HayterCook2012"/>
and [[autoimmune system]]s,<ref name="Rose"/><ref name="HayterCook2012"/>
[[gastroenterology]],<ref name="Greuter">{{cite journal | vauthors = Greuter T, Manser C, Pittet V, Vavricka SR, Biedermann L | title = Gender Differences in Inflammatory Bowel Disease | language = english | journal = Digestion | volume = 101 | issue = 1 | pages = 98–104 | date = 2020 | pmid = 31995797 | doi = 10.1159/000504701 | s2cid = 210946741 | author6 = Official working group of the Swiss Society of Gastroenterology | doi-access = free }}</ref><ref name="van Kessel">{{cite journal | vauthors = van Kessel L, Teunissen D, Lagro-Janssen T | title = Sex-Gender Differences in the Effectiveness of Treatment of Irritable Bowel Syndrome: A Systematic Review | journal = International Journal of General Medicine | volume = 14 | pages = 867–884 | date = March 2021 | pmid = 33758534 | pmc = 7979326 | doi = 10.2147/IJGM.S291964 }}</ref>
[[gastroenterology]],<ref name="Greuter">{{cite journal | vauthors = Greuter T, Manser C, Pittet V, Vavricka SR, Biedermann L | title = Gender Differences in Inflammatory Bowel Disease | language = english | journal = Digestion | volume = 101 | issue = 1 | pages = 98–104 | date = 2020 | pmid = 31995797 | doi = 10.1159/000504701 | s2cid = 210946741 | author6 = Official working group of the Swiss Society of Gastroenterology | doi-access = free }}</ref><ref name="van Kessel">{{cite journal | vauthors = van Kessel L, Teunissen D, Lagro-Janssen T | title = Sex-Gender Differences in the Effectiveness of Treatment of Irritable Bowel Syndrome: A Systematic Review | journal = International Journal of General Medicine | volume = 14 | pages = 867–884 | date = March 2021 | pmid = 33758534 | pmc = 7979326 | doi = 10.2147/IJGM.S291964 | doi-access = free }}</ref><ref>Fracas E, Costantino A, Vecchi M, Buoli M. Depressive and Anxiety Disorders in Patients with Inflammatory Bowel Diseases: Are There Any Gender Differences? International Journal of Environmental Research and Public Health. 2023; 20(13):6255. https://doi.org/10.3390/ijerph20136255</ref>
[[hepatology]],<ref name="Mauvais-Jarvis">{{cite journal | vauthors = Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, De Vries GJ, Epperson CN, Govindan R, Klein SL, Lonardo A, Maki PM, McCullough LD, Regitz-Zagrosek V, Regensteiner JG, Rubin JB, Sandberg K, Suzuki A | display-authors = 6 | title = Sex and gender: modifiers of health, disease, and medicine | language = English | journal = Lancet | volume = 396 | issue = 10250 | pages = 565–582 | date = August 2020 | pmid = 32828189 | pmc = 7440877 | doi = 10.1016/S0140-6736(20)31561-0 }}</ref>
[[hepatology]],<ref name="Mauvais-Jarvis">{{cite journal | vauthors = Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, De Vries GJ, Epperson CN, Govindan R, Klein SL, Lonardo A, Maki PM, McCullough LD, Regitz-Zagrosek V, Regensteiner JG, Rubin JB, Sandberg K, Suzuki A | display-authors = 6 | title = Sex and gender: modifiers of health, disease, and medicine | language = English | journal = Lancet | volume = 396 | issue = 10250 | pages = 565–582 | date = August 2020 | pmid = 32828189 | pmc = 7440877 | doi = 10.1016/S0140-6736(20)31561-0 }}</ref>
[[nephrology]],<ref name="Bairey Merz">{{cite journal | vauthors = Bairey Merz CN, Dember LM, Ingelfinger JR, Vinson A, Neugarten J, Sandberg KL, Sullivan JC, Maric-Bilkan C, Rankin TL, Kimmel PL, Star RA | display-authors = 6 | title = Sex and the kidneys: current understanding and research opportunities | journal = Nature Reviews. Nephrology | volume = 15 | issue = 12 | pages = 776–783 | date = December 2019 | pmid = 31586165 | pmc = 7745509 | doi = 10.1038/s41581-019-0208-6 }}</ref>
[[nephrology]],<ref name="Bairey Merz">{{cite journal | vauthors = Bairey Merz CN, Dember LM, Ingelfinger JR, Vinson A, Neugarten J, Sandberg KL, Sullivan JC, Maric-Bilkan C, Rankin TL, Kimmel PL, Star RA | display-authors = 6 | title = Sex and the kidneys: current understanding and research opportunities | journal = Nature Reviews. Nephrology | volume = 15 | issue = 12 | pages = 776–783 | date = December 2019 | pmid = 31586165 | pmc = 7745509 | doi = 10.1038/s41581-019-0208-6 }}</ref>
[[endocrinology]],<ref name="Bhargava">{{cite journal | vauthors = Bhargava A, Arnold AP, Bangasser DA, Denton KM, Gupta A, Hilliard Krause LM, Mayer EA, McCarthy M, Miller WL, Raznahan A, Verma R | display-authors = 6 | title = Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement | journal = Endocrine Reviews | volume = 42 | issue = 3 | pages = 219–258 | date = May 2021 | pmid = 33704446 | pmc = 8348944 | doi = 10.1210/endrev/bnaa034 }}</ref><ref name="Lauretta">{{cite journal | vauthors = Lauretta R, Sansone M, Sansone A, Romanelli F, Appetecchia M | title = Gender in Endocrine Diseases: Role of Sex Gonadal Hormones | journal = International Journal of Endocrinology | volume = 2018 | pages = 4847376 | date = 21 October 2018 | pmid = 30420884 | pmc = 6215564 | doi = 10.1155/2018/4847376 | doi-access = free }}</ref>
[[endocrinology]],<ref name="Bhargava">{{cite journal | vauthors = Bhargava A, Arnold AP, Bangasser DA, Denton KM, Gupta A, Hilliard Krause LM, Mayer EA, McCarthy M, Miller WL, Raznahan A, Verma R | display-authors = 6 | title = Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement | journal = Endocrine Reviews | volume = 42 | issue = 3 | pages = 219–258 | date = May 2021 | pmid = 33704446 | pmc = 8348944 | doi = 10.1210/endrev/bnaa034 }}</ref><ref name="Lauretta">{{cite journal | vauthors = Lauretta R, Sansone M, Sansone A, Romanelli F, Appetecchia M | title = Gender in Endocrine Diseases: Role of Sex Gonadal Hormones | journal = International Journal of Endocrinology | volume = 2018 | pages = 4847376 | date = 21 October 2018 | pmid = 30420884 | pmc = 6215564 | doi = 10.1155/2018/4847376 | doi-access = free }}</ref>
[[haematology]],<ref name="Murphy">{{cite journal | vauthors = Murphy WG | title = The sex difference in haemoglobin levels in adults - mechanisms, causes, and consequences | journal = Blood Reviews | volume = 28 | issue = 2 | pages = 41–47 | date = March 2014 | pmid = 24491804 | doi = 10.1016/j.blre.2013.12.003 }}</ref>
[[haematology]],<ref name="Murphy">{{cite journal | vauthors = Murphy WG | title = The sex difference in haemoglobin levels in adults - mechanisms, causes, and consequences | journal = Blood Reviews | volume = 28 | issue = 2 | pages = 41–47 | date = March 2014 | pmid = 24491804 | doi = 10.1016/j.blre.2013.12.003 }}</ref>
[[neurology]],<ref name="Clayton">{{cite journal | vauthors = Clayton JA | title = Sex influences in neurological disorders: case studies and perspectives | journal = Dialogues in Clinical Neuroscience | volume = 18 | issue = 4 | pages = 357–360 | date = December 2016 | pmid = 28179807 | pmc = 5286721 | doi = 10.31887/DCNS.2016.18.4/jclayton }}</ref><ref>{{cite book |last1=Institute of Medicine |title=Sex Differences and Implications for Translational Neuroscience Research : Workshop Summary |date=2011 |publisher=National Academies Press |location=Washington, DC |isbn=978-0-309-16124-4|url=https://www.ncbi.nlm.nih.gov/books/NBK53393/ }}</ref><ref name="Rippon">{{cite journal | vauthors = Rippon G, Eliot L, Genon S, Joel D | title = How hype and hyperbole distort the neuroscience of sex differences | journal = PLOS Biology | volume = 19 | issue = 5 | pages = e3001253 | date = May 2021 | pmid = 33970901 | pmc = 8136838 | doi = 10.1371/journal.pbio.3001253 }}</ref><ref name="Shansky">{{cite journal | vauthors = Shansky RM, Murphy AZ | title = Considering sex as a biological variable will require a global shift in science culture | journal = Nature Neuroscience | volume = 24 | issue = 4 | pages = 457–464 | date = April 2021 | pmid = 33649507 | doi = 10.1038/s41593-021-00806-8 | s2cid = 232091204 }}</ref>
[[neurology]],<ref name="Clayton">{{cite journal | vauthors = Clayton JA | title = Sex influences in neurological disorders: case studies and perspectives | journal = Dialogues in Clinical Neuroscience | volume = 18 | issue = 4 | pages = 357–360 | date = December 2016 | pmid = 28179807 | pmc = 5286721 | doi = 10.31887/DCNS.2016.18.4/jclayton }}</ref><ref>{{cite book |last1=Institute of Medicine |title=Sex Differences and Implications for Translational Neuroscience Research : Workshop Summary |date=2011 |publisher=National Academies Press |location=Washington, DC |isbn=978-0-309-16124-4|url=https://www.ncbi.nlm.nih.gov/books/NBK53393/ }}</ref><ref name="Rippon">{{cite journal | vauthors = Rippon G, Eliot L, Genon S, Joel D | title = How hype and hyperbole distort the neuroscience of sex differences | journal = PLOS Biology | volume = 19 | issue = 5 | pages = e3001253 | date = May 2021 | pmid = 33970901 | pmc = 8136838 | doi = 10.1371/journal.pbio.3001253 | doi-access = free }}</ref><ref name="Shansky">{{cite journal | vauthors = Shansky RM, Murphy AZ | title = Considering sex as a biological variable will require a global shift in science culture | journal = Nature Neuroscience | volume = 24 | issue = 4 | pages = 457–464 | date = April 2021 | pmid = 33649507 | doi = 10.1038/s41593-021-00806-8 | s2cid = 232091204 }}</ref>
[[pharmacokinetics]], and [[pharmacodynamics]].<ref name="Zucker">{{cite journal | vauthors = Zucker I, Prendergast BJ | title = Sex differences in pharmacokinetics predict adverse drug reactions in women | journal = Biology of Sex Differences | volume = 11 | issue = 1 | pages = 32 | date = June 2020 | pmid = 32503637 | pmc = 7275616 | doi = 10.1186/s13293-020-00308-5 }}</ref><ref name="Soldin">{{cite journal | vauthors = Soldin OP, Mattison DR | title = Sex differences in pharmacokinetics and pharmacodynamics | journal = Clinical Pharmacokinetics | volume = 48 | issue = 3 | pages = 143–157 | date = 2009 | pmid = 19385708 | pmc = 3644551 | doi = 10.2165/00003088-200948030-00001 }}</ref><ref name="Regitz‐Zagrosek"/><ref name="Oertelt-Prigione"/>
[[pharmacokinetics]], and [[pharmacodynamics]].<ref name="Zucker">{{cite journal | vauthors = Zucker I, Prendergast BJ | title = Sex differences in pharmacokinetics predict adverse drug reactions in women | journal = Biology of Sex Differences | volume = 11 | issue = 1 | pages = 32 | date = June 2020 | pmid = 32503637 | pmc = 7275616 | doi = 10.1186/s13293-020-00308-5 | doi-access = free }}</ref><ref name="Soldin">{{cite journal | vauthors = Soldin OP, Mattison DR | title = Sex differences in pharmacokinetics and pharmacodynamics | journal = Clinical Pharmacokinetics | volume = 48 | issue = 3 | pages = 143–157 | date = 2009 | pmid = 19385708 | pmc = 3644551 | doi = 10.2165/00003088-200948030-00001 }}</ref><ref name="Regitz‐Zagrosek"/><ref name="Oertelt-Prigione"/>


[[Sexually transmitted disease]]s, which have a significant probability of transmission through sexual contact, can be contracted by either sex. Their occurrence may reflect economic and social as well as biological factors, leading to sex differences in the transmission, prevalence, and disease burden of STDs.<ref name="Madkan">{{cite journal | vauthors = Madkan VK, Giancola AA, Sra KK, Tyring SK | title = Sex differences in the transmission, prevention, and disease manifestations of sexually transmitted diseases | journal = Archives of Dermatology | volume = 142 | issue = 3 | pages = 365–370 | date = March 2006 | pmid = 16549716 | doi = 10.1001/archderm.142.3.365 }}</ref>
[[Sexually transmitted infection]]s, which have a significant probability of transmission through sexual contact, can be contracted by either sex. Their occurrence may reflect economic and social as well as biological factors, leading to sex differences in the transmission, prevalence, and disease burden of STIs.<ref name="Madkan">{{cite journal | vauthors = Madkan VK, Giancola AA, Sra KK, Tyring SK | title = Sex differences in the transmission, prevention, and disease manifestations of sexually transmitted diseases | journal = Archives of Dermatology | volume = 142 | issue = 3 | pages = 365–370 | date = March 2006 | pmid = 16549716 | doi = 10.1001/archderm.142.3.365 }}</ref>


Historically, medical research has primarily been conducted using the male body as the basis for clinical studies. The findings of these studies have often been applied across the sexes, and healthcare providers have traditionally assumed a uniform approach in treating both male and female patients. More recently, medical research has started to understand the importance of taking sex into account as evidence increases that the symptoms and responses to medical treatment may be very different between sexes.<ref name="MauvaisLancet2020">{{cite journal | vauthors = Mauvais-Jarvis F, Merz BN, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, Vries GJ, Epperson CN, Govindan R, Klein SL, Lonardo A, Maki PM, McCullough LD, Regitz-Zagrosek V, Regensteiner SG, Rubin JB, Sandberg K, Suzuki A | display-authors = 6 |title=Sex and gender: modifiers of health, disease, and medicine |journal=The Lancet |date=22 August 2020 |volume=396 |issue=10250 |pages=565–582 |doi=10.1016/S0140-6736(20)31561-0 | pmid = 32828189 | pmc = 7440877 }}</ref>
Historically, medical research has primarily been conducted using the male body as the basis for clinical studies. The findings of these studies have often been applied across the sexes, and healthcare providers have traditionally assumed a uniform approach in treating both male and female patients. More recently, medical research has started to understand the importance of taking sex into account as evidence increases that the symptoms and responses to medical treatment may be very different between sexes.<ref name="MauvaisLancet2020">{{cite journal | vauthors = Mauvais-Jarvis F, Merz BN, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, Vries GJ, Epperson CN, Govindan R, Klein SL, Lonardo A, Maki PM, McCullough LD, Regitz-Zagrosek V, Regensteiner SG, Rubin JB, Sandberg K, Suzuki A | display-authors = 6 |title=Sex and gender: modifiers of health, disease, and medicine |journal=The Lancet |date=22 August 2020 |volume=396 |issue=10250 |pages=565–582 |doi=10.1016/S0140-6736(20)31561-0 | pmid = 32828189 | pmc = 7440877 }}</ref>
Line 22: Line 22:
==Background==
==Background==


Females and males exhibit many differences in terms of risk of developing disease, receiving an accurate diagnosis, and responding to treatments. A patient's sex has been increasingly recognized as one of the most important modulators of clinical decision making.<ref>{{cite journal |last1=Legato |first1=Marianne J. |last2=Johnson |first2=Paula A. |last3=Manson |first3=JoAnn E. |title=Consideration of Sex Differences in Medicine to Improve Health Care and Patient Outcomes |journal=JAMA |date=8 November 2016 |volume=316 |issue=18 |pages=1865–1866 |doi=10.1001/jama.2016.13995|pmid=27802499 }}</ref> Sex differences have been found across a broad range of disease areas, including many diseases which are sex-specific. The sex chromosome complement and sex hormone environment are known to be the primary constitutive difference between females and males.<ref>{{cite journal |last1=Miller |first1=Leah R. |last2=Marks |first2=Cheryl |last3=Becker |first3=Jill B. |last4=Hurn |first4=Patricia D. |last5=Chen |first5=Wei‐Jung |last6=Woodruff |first6=Teresa |last7=McCarthy |first7=Margaret M. |last8=Sohrabji |first8=Farida |last9=Schiebinger |first9=Londa |last10=Wetherington |first10=Cora Lee |last11=Makris |first11=Susan |last12=Arnold |first12=Arthur P. |last13=Einstein |first13=Gillian |last14=Miller |first14=Virginia M. |last15=Sandberg |first15=Kathryn |last16=Maier |first16=Susan |last17=Cornelison |first17=Terri L. |last18=Clayton |first18=Janine A. |title=Considering sex as a biological variable in preclinical research |journal=The FASEB Journal |date=January 2017 |volume=31 |issue=1 |pages=29–34 |doi=10.1096/fj.201600781r|pmid=27682203 |pmc=6191005 }}</ref> The imbalance of gene expression between the X and Y chromosomes is present within virtually all cells in the human body. Sex hormones are crucial in body development and function and also thought to contribute to sex differences in some diseases.<ref>{{cite journal |last1=Maeng |first1=Lisa Y. |last2=Milad |first2=Mohammed R. |title=Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones |journal=Hormones and Behavior |date=1 November 2015 |volume=76 |pages=106–117 |doi=10.1016/j.yhbeh.2015.04.002 |pmid=25888456 |pmc=4823998 |language=en |issn=0018-506X}}</ref> It is suspected that many differences between the sexes are also influenced by social, environmental, and psychological factors which are difficult to tease apart from biological ones.<ref name="DoesSexMatter"/>
Females and males exhibit many differences in terms of risk of developing disease, receiving an accurate diagnosis, and responding to treatments. A patient's sex has been increasingly recognized as one of the most important modulators of clinical decision making.<ref>{{cite journal |last1=Legato |first1=Marianne J. |last2=Johnson |first2=Paula A. |last3=Manson |first3=JoAnn E. |title=Consideration of Sex Differences in Medicine to Improve Health Care and Patient Outcomes |journal=JAMA |date=8 November 2016 |volume=316 |issue=18 |pages=1865–1866 |doi=10.1001/jama.2016.13995|pmid=27802499 }}</ref> Sex differences have been found across a broad range of disease areas, including many diseases which are sex-specific. The sex chromosome complement and sex hormone environment are known to be the primary constitutive difference between females and males.<ref>{{cite journal |last1=Miller |first1=Leah R. |last2=Marks |first2=Cheryl |last3=Becker |first3=Jill B. |last4=Hurn |first4=Patricia D. |last5=Chen |first5=Wei-Jung |last6=Woodruff |first6=Teresa |last7=McCarthy |first7=Margaret M. |last8=Sohrabji |first8=Farida |last9=Schiebinger |first9=Londa |last10=Wetherington |first10=Cora Lee |last11=Makris |first11=Susan |last12=Arnold |first12=Arthur P. |last13=Einstein |first13=Gillian |last14=Miller |first14=Virginia M. |last15=Sandberg |first15=Kathryn |last16=Maier |first16=Susan |last17=Cornelison |first17=Terri L. |last18=Clayton |first18=Janine A. |title=Considering sex as a biological variable in preclinical research |journal=The FASEB Journal |date=January 2017 |volume=31 |issue=1 |pages=29–34 |doi=10.1096/fj.201600781r|doi-access=free |pmid=27682203 |pmc=6191005 }}</ref> The imbalance of gene expression between the X and Y chromosomes is present within virtually all cells in the human body. Sex hormones are crucial in body development and function and also thought to contribute to sex differences in some diseases.<ref>{{cite journal |last1=Maeng |first1=Lisa Y. |last2=Milad |first2=Mohammed R. |title=Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones |journal=Hormones and Behavior |date=1 November 2015 |volume=76 |pages=106–117 |doi=10.1016/j.yhbeh.2015.04.002 |pmid=25888456 |pmc=4823998 |language=en |issn=0018-506X}}</ref> It is suspected that many differences between the sexes are also influenced by social, environmental, and psychological factors which are difficult to tease apart from biological ones.<ref name="DoesSexMatter"/>


==Causes==
==Causes==
Sex-related illnesses have various causes:<ref name="Mauvais-Jarvis"/>
Sex-related illnesses have various causes:<ref name="Mauvais-Jarvis"/>
* Genetic sex differences start at [[Conception (biology)|conception]] depending on whether an ovum fuses with a sperm cell carrying an X or a Y chromosome. This leads to sex-based differences at the molecular level for all male and female cells.<ref name="Mauvais-Jarvis"/>
* Genetic sex differences start at [[Human fertilization|conception]] depending on whether an ovum fuses with a sperm cell carrying an X or a Y chromosome. This leads to sex-based differences at the molecular level for all male and female cells.<ref name="Mauvais-Jarvis"/>
* In males, the X chromosome carries only maternal imprints, while in females X chromosomes are present with both maternal and paternal imprints. In female cells, random processes of [[X-inactivation]] "turn off" the extra X chromosome. As a result, females, but not males, are [[Mosaic (genetics)|mosaics]]. Female cells may express higher levels of some genes.<ref name="Migeon"/><ref name="Barbara"/><ref name="Brown"/>
* In males, the X chromosome carries only maternal imprints, while in females X chromosomes are present with both maternal and paternal imprints. In female cells, random processes of [[X-inactivation]] "turn off" the extra X chromosome. As a result, females, but not males, are [[Mosaic (genetics)|mosaics]]. Female cells may express higher levels of some genes.<ref name="Migeon"/><ref name="Barbara"/><ref name="Brown"/>
* Sex differences at the chromosome and molecular level exist in all human cells, and persist life-long, independent of sex hormones in the body.<ref name="Mauvais-Jarvis"/>
* Sex differences at the chromosome and molecular level exist in all human cells, and persist life-long, independent of sex hormones in the body.<ref name="Mauvais-Jarvis"/>
* [[Sex-linked]] genetic conditions that differ in males and females may reflect the effects of genetic damage on an X chromosome. In some cases, the presence of an "extra" X chromosome in female cells may lessen the impact of such damage. In severe cases, males may die during development and females may survive but display a sex-linked illness.<ref name="Migeon"/>
* [[Sex-linked]] genetic conditions that differ in males and females may reflect the effects of genetic damage on an X chromosome. In some cases, the presence of an "extra" X chromosome in female cells may lessen the impact of such damage. In severe cases, males may die during development and females may survive but display a sex-linked illness.<ref name="Migeon"/>
* The [[reproductive system]] develops differently for each sex. Sex-specific parts of the male and female reproductive systems affect the rest of the body and also can be affected differently by diseases.<ref name="Zimmermann">{{cite news | vauthors = Zimmermann KA |title=Reproductive System: Facts, Functions & Diseases |url=https://www.livescience.com/26741-reproductive-system.html |access-date=11 November 2021 |work=Live Science |date=22 March 2018|language=en}}</ref>
* The [[Human reproductive system|reproductive system]] develops differently for each sex. Sex-specific parts of the male and female reproductive systems affect the rest of the body and also can be affected differently by diseases.<ref name="Zimmermann">{{cite news | vauthors = Zimmermann KA |title=Reproductive System: Facts, Functions & Diseases |url=https://www.livescience.com/26741-reproductive-system.html |access-date=11 November 2021 |work=Live Science |date=22 March 2018|language=en}}</ref>
* Socially constructed norms relate to [[gender role]]s, relationships, positional power, and a wide variety of behaviours. Norms affect people differentially depending on their sex and gender.<ref name="Mauvais-Jarvis"/>
* Socially constructed norms relate to [[gender role]]s, relationships, positional power, and a wide variety of behaviours. Norms affect people differentially depending on their sex and gender.<ref name="Mauvais-Jarvis"/>
* Different levels of prevention, reporting, diagnosis, and treatment have been observed based on sex and gender.<ref name="Mauvais-Jarvis"/>
* Different levels of prevention, reporting, diagnosis, and treatment have been observed based on sex and gender.<ref name="Mauvais-Jarvis"/>
Line 38: Line 38:
Examples of sex-related illnesses and disorders in [[Female#Mammalian female|human females]]:<ref name="Regitz‐Zagrosek"/>
Examples of sex-related illnesses and disorders in [[Female#Mammalian female|human females]]:<ref name="Regitz‐Zagrosek"/>


* 99% of [[breast cancer]] occurs in women.<ref>{{cite web|url=http://www.cancer.gov/cancertopics/pdq/treatment/malebreast/HealthProfessional|title=Male Breast Cancer Treatment|year=2014|publisher=[[National Cancer Institute]]|archive-url=https://web.archive.org/web/20140704182515/http://www.cancer.gov/cancertopics/pdq/treatment/malebreast/HealthProfessional|archive-date=4 July 2014|url-status=live|access-date=29 June 2014|df=dmy-all}}</ref>
* 99% of breast cancer occurs in women.<ref>{{cite web|url=http://www.cancer.gov/cancertopics/pdq/treatment/malebreast/HealthProfessional|title=Male Breast Cancer Treatment|year=2014|publisher=[[National Cancer Institute]]|archive-url=https://web.archive.org/web/20140704182515/http://www.cancer.gov/cancertopics/pdq/treatment/malebreast/HealthProfessional|archive-date=4 July 2014|url-status=live|access-date=29 June 2014|df=dmy-all}}</ref>
* [[Ovarian cancer]], [[endometriosis]] and other diseases affect the [[female reproductive system]].<ref>{{cite journal | vauthors = Reid BM, Permuth JB, Sellers TA | title = Epidemiology of ovarian cancer: a review | journal = Cancer Biology & Medicine | volume = 14 | issue = 1 | pages = 9–32 | date = February 2017 | pmid = 28443200 | doi = 10.20892/j.issn.2095-3941.2016.0084 | pmc = 5365187 }}</ref>
* [[Ovarian cancer]], [[endometriosis]] and other diseases affect the [[female reproductive system]].<ref>{{cite journal | vauthors = Reid BM, Permuth JB, Sellers TA | title = Epidemiology of ovarian cancer: a review | journal = Cancer Biology & Medicine | volume = 14 | issue = 1 | pages = 9–32 | date = February 2017 | pmid = 28443200 | doi = 10.20892/j.issn.2095-3941.2016.0084 | pmc = 5365187 }}</ref>
* Females are more likely to experience severe outcomes from [[Virus|viral]] [[respiratory tract infections]] during their reproductive years, compared to males of the same age. In response to treatment, females may develop greater immune responses but may also experience more adverse reactions than males.<ref name="Ursin"/><ref name="Klein">{{cite journal | vauthors = Klein SL, Flanagan KL | title = Sex differences in immune responses | journal = Nature Reviews. Immunology | volume = 16 | issue = 10 | pages = 626–638 | date = October 2016 | pmid = 27546235 | doi = 10.1038/nri.2016.90 | s2cid = 2258164 | doi-access = free }}</ref>
* Females are more likely to experience severe outcomes from [[Virus|viral]] [[respiratory tract infections]] during their reproductive years, compared to males of the same age. In response to treatment, females may develop greater immune responses but may also experience more adverse reactions than males.<ref name="Ursin"/><ref name="Klein">{{cite journal | vauthors = Klein SL, Flanagan KL | title = Sex differences in immune responses | journal = Nature Reviews. Immunology | volume = 16 | issue = 10 | pages = 626–638 | date = October 2016 | pmid = 27546235 | doi = 10.1038/nri.2016.90 | s2cid = 2258164 | doi-access = free }}</ref>
* Approximately four times more women have [[osteoporosis]] than men.<ref>{{cite journal | vauthors = Alswat KA | title = Gender Disparities in Osteoporosis | journal = Journal of Clinical Medicine Research | volume = 9 | issue = 5 | pages = 382–387 | date = May 2017 | pmid = 28392857 | pmc = 5380170 | doi = 10.14740/jocmr2970w }}</ref>
* Approximately four times more women have [[osteoporosis]] than men.<ref>{{cite journal | vauthors = Alswat KA | title = Gender Disparities in Osteoporosis | journal = Journal of Clinical Medicine Research | volume = 9 | issue = 5 | pages = 382–387 | date = May 2017 | pmid = 28392857 | pmc = 5380170 | doi = 10.14740/jocmr2970w }}</ref>
* [[Autoimmune diseases]], such as [[Sjögren's syndrome]] and [[scleroderma]], are more prevalent in women. Roughly 70% of those living with autoimmune diseases are female.<ref name="Rose">{{cite journal | vauthors = Rose NR, Bona C | title = Defining criteria for autoimmune diseases (Witebsky's postulates revisited) | journal = Immunology Today | volume = 14 | issue = 9 | pages = 426–430 | date = September 1993 | pmid = 8216719 | doi = 10.1016/0167-5699(93)90244-F }}</ref><ref name="HayterCook2012">{{cite journal | vauthors = Hayter SM, Cook MC | title = Updated assessment of the prevalence, spectrum and case definition of autoimmune disease | journal = Autoimmunity Reviews | volume = 11 | issue = 10 | pages = 754–765 | date = August 2012 | pmid = 22387972 | doi = 10.1016/j.autrev.2012.02.001 }}</ref> See [[Autoimmunity#Sex|Sex differences in autoimmunity]].
* [[Autoimmune diseases]], such as [[Sjögren's syndrome]] and [[scleroderma]], are more prevalent in women. Roughly 70% of those living with autoimmune diseases are female.<ref name="Rose">{{cite journal | vauthors = Rose NR, Bona C | title = Defining criteria for autoimmune diseases (Witebsky's postulates revisited) | journal = Immunology Today | volume = 14 | issue = 9 | pages = 426–430 | date = September 1993 | pmid = 8216719 | doi = 10.1016/0167-5699(93)90244-F }}</ref><ref name="HayterCook2012">{{cite journal | vauthors = Hayter SM, Cook MC | title = Updated assessment of the prevalence, spectrum and case definition of autoimmune disease | journal = Autoimmunity Reviews | volume = 11 | issue = 10 | pages = 754–765 | date = August 2012 | pmid = 22387972 | doi = 10.1016/j.autrev.2012.02.001 }}</ref> See [[Autoimmunity#Sex|Sex differences in autoimmunity]].
* While estimates vary widely,<ref>{{cite journal |last1=Franceschini |first1=Anna |last2=Fattore |first2=Liana |title=Gender-specific approach in psychiatric diseases: Because sex matters |journal=European Journal of Pharmacology |date=5 April 2021 |volume=896 |pages=173895 |doi=10.1016/j.ejphar.2021.173895 |pmid=33508283 |s2cid=231753879 |url=https://www.sciencedirect.com/science/article/pii/S0014299921000480 |access-date=23 December 2021 |language=en |issn=0014-2999}}</ref><ref name="Sweeting">{{cite journal | vauthors = Sweeting H, Walker L, MacLean A, Patterson C, Räisänen U, Hunt K | title = Prevalence of eating disorders in males: a review of rates reported in academic research and UK mass media | journal = International Journal of Men's Health | volume = 14 | issue = 2 | pages = 10.3149/jmh.1402.86 | date = 2015 | pmid = 26290657 | pmc = 4538851 | doi = 10.3149/jmh.1402.86 | doi-broken-date = 31 December 2022 }}</ref> [[eating disorder]]s are estimated to affect as high as 13% of women in some age groups<ref name="Stice">{{cite journal | vauthors = Stice E, Marti CN, Rohde P | title = Prevalence, incidence, impairment, and course of the proposed DSM-5 eating disorder diagnoses in an 8-year prospective community study of young women | journal = Journal of Abnormal Psychology | volume = 122 | issue = 2 | pages = 445–457 | date = May 2013 | pmid = 23148784 | doi = 10.1037/a0030679 | pmc = 3980846 }}</ref><ref name="Gagne">{{cite journal | vauthors = Gagne DA, Von Holle A, Brownley KA, Runfola CD, Hofmeier S, Branch KE, Bulik CM | title = Eating disorder symptoms and weight and shape concerns in a large web-based convenience sample of women ages 50 and above: results of the Gender and Body Image (GABI) study | journal = The International Journal of Eating Disorders | volume = 45 | issue = 7 | pages = 832–844 | date = November 2012 | pmid = 22729743 | doi = 10.1002/eat.22030 | pmc = 3459309 }}</ref><ref name="Schaumberg">{{cite journal | vauthors = Schaumberg K, Welch E, Breithaupt L, Hübel C, Baker JH, Munn-Chernoff MA, Yilmaz Z, Ehrlich S, Mustelin L, Ghaderi A, Hardaway AJ, Bulik-Sullivan EC, Hedman AM, Jangmo A, Nilsson IA, Wiklund C, Yao S, Seidel M, Bulik CM | display-authors = 6 | title = The Science Behind the Academy for Eating Disorders' Nine Truths About Eating Disorders | journal = European Eating Disorders Review | volume = 25 | issue = 6 | pages = 432–450 | date = November 2017 | pmid = 28967161 | pmc = 5711426 | doi = 10.1002/erv.2553 }}</ref> and 3% of men in [[Western world|Western]] cultures, with [[anorexia nervosa]] affecting 10 women for each man and [[bulimia nervosa]] affecting 8 women for each man.<ref name="DSM5">{{Cite book|title=Diagnostic and Statistical Manual of Mental Disorders|last=American Psychiatric Association|publisher=American Psychiatric Publishing|year=2013|isbn=978-0-89042-555-8|edition=Fifth|location=Arlington, VA|pages=[https://archive.org/details/diagnosticstatis0005unse/page/345 338–349]|url=https://archive.org/details/diagnosticstatis0005unse/page/345}}</ref>
* While estimates vary widely,<ref>{{cite journal |last1=Franceschini |first1=Anna |last2=Fattore |first2=Liana |title=Gender-specific approach in psychiatric diseases: Because sex matters |journal=European Journal of Pharmacology |date=5 April 2021 |volume=896 |pages=173895 |doi=10.1016/j.ejphar.2021.173895 |pmid=33508283 |s2cid=231753879 |url=https://www.sciencedirect.com/science/article/pii/S0014299921000480 |access-date=23 December 2021 |language=en |issn=0014-2999}}</ref><ref name="Sweeting">{{cite journal | vauthors = Sweeting H, Walker L, MacLean A, Patterson C, Räisänen U, Hunt K | title = Prevalence of eating disorders in males: a review of rates reported in academic research and UK mass media | journal = International Journal of Men's Health | volume = 14 | issue = 2 | pages = 10.3149/jmh.1402.86 | date = 2015 | pmid = 26290657 | pmc = 4538851 | doi = 10.3149/jmh.1402.86 | doi-broken-date = 31 January 2024 }}</ref> [[eating disorder]]s are estimated to affect as high as 13% of women in some age groups<ref name="Stice">{{cite journal | vauthors = Stice E, Marti CN, Rohde P | title = Prevalence, incidence, impairment, and course of the proposed DSM-5 eating disorder diagnoses in an 8-year prospective community study of young women | journal = Journal of Abnormal Psychology | volume = 122 | issue = 2 | pages = 445–457 | date = May 2013 | pmid = 23148784 | doi = 10.1037/a0030679 | pmc = 3980846 }}</ref><ref name="Gagne">{{cite journal | vauthors = Gagne DA, Von Holle A, Brownley KA, Runfola CD, Hofmeier S, Branch KE, Bulik CM | title = Eating disorder symptoms and weight and shape concerns in a large web-based convenience sample of women ages 50 and above: results of the Gender and Body Image (GABI) study | journal = The International Journal of Eating Disorders | volume = 45 | issue = 7 | pages = 832–844 | date = November 2012 | pmid = 22729743 | doi = 10.1002/eat.22030 | pmc = 3459309 }}</ref><ref name="Schaumberg">{{cite journal | vauthors = Schaumberg K, Welch E, Breithaupt L, Hübel C, Baker JH, Munn-Chernoff MA, Yilmaz Z, Ehrlich S, Mustelin L, Ghaderi A, Hardaway AJ, Bulik-Sullivan EC, Hedman AM, Jangmo A, Nilsson IA, Wiklund C, Yao S, Seidel M, Bulik CM | display-authors = 6 | title = The Science Behind the Academy for Eating Disorders' Nine Truths About Eating Disorders | journal = European Eating Disorders Review | volume = 25 | issue = 6 | pages = 432–450 | date = November 2017 | pmid = 28967161 | pmc = 5711426 | doi = 10.1002/erv.2553 }}</ref> and 3% of men in Western cultures, with [[anorexia nervosa]] affecting 10 women for each man and [[bulimia nervosa]] affecting 8 women for each man.<ref name="DSM5">{{Cite book|title=Diagnostic and Statistical Manual of Mental Disorders|last=American Psychiatric Association|publisher=American Psychiatric Publishing|year=2013|isbn=978-0-89042-555-8|edition=Fifth|location=Arlington, VA|pages=[https://archive.org/details/diagnosticstatis0005unse/page/345 338–349]|url=https://archive.org/details/diagnosticstatis0005unse/page/345}}</ref>
* [[Alzheimer's disease]] has a higher incidence in females compared to males.<ref>{{cite journal |last1=Hanamsagar |first1=Richa |last2=Bilbo |first2=Staci D. |title=Sex differences in neurodevelopmental and neurodegenerative disorders: Focus on microglial function and neuroinflammation during development |journal=The Journal of Steroid Biochemistry and Molecular Biology |date=June 2016 |volume=160 |pages=127–133 |doi=10.1016/j.jsbmb.2015.09.039 |pmid=26435451 |pmc=4829467 |language=en}}</ref> There are also phenotypic differences, with females displaying more cognitive deficits. Females are also more likely to have [[neurofibrillary tangle]]s present on autopsy.<ref name="Ullah2019NeuroBioRev"/>
* [[Alzheimer's disease]] has a higher incidence in females compared to males.<ref>{{cite journal |last1=Hanamsagar |first1=Richa |last2=Bilbo |first2=Staci D. |title=Sex differences in neurodevelopmental and neurodegenerative disorders: Focus on microglial function and neuroinflammation during development |journal=The Journal of Steroid Biochemistry and Molecular Biology |date=June 2016 |volume=160 |pages=127–133 |doi=10.1016/j.jsbmb.2015.09.039 |pmid=26435451 |pmc=4829467 |language=en}}</ref> There are also phenotypic differences, with females displaying more cognitive deficits. Females are also more likely to have [[neurofibrillary tangle]]s present on autopsy.<ref name="Ullah2019NeuroBioRev"/>
* [[Huntington's disease]] affects females and males differently. Females have faster disease progression, and display symptoms with fewer [[Trinucleotide repeat disorder|trinucleotide repeat]]s.<ref name="Ullah2019NeuroBioRev"/><ref name="Zielonka">{{cite journal | vauthors = Zielonka D, Stawinska-Witoszynska B | title = Gender Differences in Non-sex Linked Disorders: Insights From Huntington's Disease | journal = Frontiers in Neurology | volume = 11 | pages = 571 | date = 2020 | pmid = 32733356 | pmc = 7358529 | doi = 10.3389/fneur.2020.00571 | doi-access = free }}</ref>
* [[Huntington's disease]] affects females and males differently. Females have faster disease progression, and display symptoms with fewer [[Trinucleotide repeat disorder|trinucleotide repeat]]s.<ref name="Ullah2019NeuroBioRev"/><ref name="Zielonka">{{cite journal | vauthors = Zielonka D, Stawinska-Witoszynska B | title = Gender Differences in Non-sex Linked Disorders: Insights From Huntington's Disease | journal = Frontiers in Neurology | volume = 11 | pages = 571 | date = 2020 | pmid = 32733356 | pmc = 7358529 | doi = 10.3389/fneur.2020.00571 | doi-access = free }}</ref>
* About two times more women than men have unipolar [[clinical depression]] (although [[bipolar disorder]] appears to affect both sexes equally).<ref name="DSM53">{{citation|author=American Psychiatric Association|title=Diagnostic and Statistical Manual of Mental Disorders|url=https://archive.org/details/diagnosticstatis0005unse/page/160|pages=[https://archive.org/details/diagnosticstatis0005unse/page/160 160–68]|year=2013|edition=5th|location=Arlington|publisher=American Psychiatric Publishing|isbn=978-0-89042-555-8|access-date=22 July 2016}}</ref><ref name="Schmitt2014">{{cite journal | vauthors = Schmitt A, Malchow B, Hasan A, Falkai P | title = The impact of environmental factors in severe psychiatric disorders | journal = Frontiers in Neuroscience | volume = 8 | issue = 19 | pages = 19 | date = February 2014 | pmid = 24574956 | pmc = 3920481 | doi = 10.3389/fnins.2014.00019 | doi-access = free }}</ref>
* About two times more women than men have unipolar clinical depression<ref>Fracas E, Costantino A, Vecchi M, Buoli M. Depressive and Anxiety Disorders in Patients with Inflammatory Bowel Diseases: Are There Any Gender Differences? Int J Environ Res Public Health. 2023 Jun 29;20(13):6255. doi: 10.3390/ijerph20136255. PMID 37444101; PMCID: PMC10340762.</ref> (although [[bipolar disorder]] appears to affect both sexes equally).<ref name="DSM53">{{citation|author=American Psychiatric Association|title=Diagnostic and Statistical Manual of Mental Disorders|url=https://archive.org/details/diagnosticstatis0005unse/page/160|pages=[https://archive.org/details/diagnosticstatis0005unse/page/160 160–68]|year=2013|edition=5th|location=Arlington|publisher=American Psychiatric Publishing|isbn=978-0-89042-555-8|access-date=22 July 2016}}</ref><ref name="Schmitt2014">{{cite journal | vauthors = Schmitt A, Malchow B, Hasan A, Falkai P | title = The impact of environmental factors in severe psychiatric disorders | journal = Frontiers in Neuroscience | volume = 8 | issue = 19 | pages = 19 | date = February 2014 | pmid = 24574956 | pmc = 3920481 | doi = 10.3389/fnins.2014.00019 | doi-access = free }}</ref>
* About three times more women than men are diagnosed with [[borderline personality disorder|borderline]] or [[histrionic personality disorder]].<ref name="DSM52">{{cite book|title=Diagnostic and statistical manual of mental disorders: DSM-5|date=2013|publisher=American Psychiatric Publishing|isbn=978-0-89042-555-8|edition=5th|location=Washington [etc.]|pages=[https://archive.org/details/diagnosticstatis0005unse/page/645 645, 663–6]|url=https://archive.org/details/diagnosticstatis0005unse/page/645}}</ref>
* About three times more women than men are diagnosed with [[borderline personality disorder|borderline]] or [[histrionic personality disorder]].<ref name="DSM52">{{cite book|title=Diagnostic and statistical manual of mental disorders: DSM-5|date=2013|publisher=American Psychiatric Publishing|isbn=978-0-89042-555-8|edition=5th|location=Washington [etc.]|pages=[https://archive.org/details/diagnosticstatis0005unse/page/645 645, 663–6]|url=https://archive.org/details/diagnosticstatis0005unse/page/645}}</ref>
*Conditions such as [[chronic fatigue syndrome]] (CFS)/myalgic encephalomyelitis (ME), [[postural orthostatic tachycardia syndrome]] (POTS), [[fibromyalgia]], [[irritable bowel syndrome]] (IBS) and [[idiopathic hypersomnia]], which have unclear causes, are more common in women, with sex ratios ranging from 2:1 in IBS,<ref>{{Cite web|url=https://www.niddk.nih.gov/health-information/digestive-diseases/irritable-bowel-syndrome/definition-facts|title=Definition & Facts for Irritable Bowel Syndrome {{!}} NIDDK|website=National Institute of Diabetes and Digestive and Kidney Diseases|access-date=2019-07-04}}</ref> fibromyalgia,<ref name="JAMA2014">{{cite journal | vauthors = Clauw DJ | title = Fibromyalgia: a clinical review | journal = JAMA | volume = 311 | issue = 15 | pages = 1547–1555 | date = April 2014 | pmid = 24737367 | doi = 10.1001/jama.2014.3266 }}</ref> and idiopathic hypersomnia<ref name="MallampalliCarter2014">{{cite journal | vauthors = Mallampalli MP, Carter CL | title = Exploring sex and gender differences in sleep health: a Society for Women's Health Research Report | journal = Journal of Women's Health | volume = 23 | issue = 7 | pages = 553–562 | date = July 2014 | pmid = 24956068 | pmc = 4089020 | doi = 10.1089/jwh.2014.4816 }}</ref> to 4:1 in CFS,<ref>{{cite web|url=https://www.womenshealth.gov/a-z-topics/chronic-fatigue-syndrome|title=Chronic fatigue syndrome|date=21 February 2017|website=womenshealth.gov|access-date=13 May 2019}}</ref> and 5:1 in POTS.<ref name="Ben2012">{{cite journal | vauthors = Benarroch EE | title = Postural tachycardia syndrome: a heterogeneous and multifactorial disorder | journal = Mayo Clinic Proceedings | volume = 87 | issue = 12 | pages = 1214–1225 | date = December 2012 | pmid = 23122672 | pmc = 3547546 | doi = 10.1016/j.mayocp.2012.08.013 }}</ref>
*Conditions such as [[chronic fatigue syndrome]] (CFS)/myalgic encephalomyelitis (ME), [[postural orthostatic tachycardia syndrome]] (POTS), [[fibromyalgia]], [[irritable bowel syndrome]] (IBS) and [[idiopathic hypersomnia]], which have unclear causes, are more common in women, with sex ratios ranging from 2:1 in IBS,<ref>{{Cite web|url=https://www.niddk.nih.gov/health-information/digestive-diseases/irritable-bowel-syndrome/definition-facts|title=Definition & Facts for Irritable Bowel Syndrome {{!}} NIDDK|website=National Institute of Diabetes and Digestive and Kidney Diseases|access-date=2019-07-04}}</ref> fibromyalgia,<ref name="JAMA2014">{{cite journal | vauthors = Clauw DJ | title = Fibromyalgia: a clinical review | journal = JAMA | volume = 311 | issue = 15 | pages = 1547–1555 | date = April 2014 | pmid = 24737367 | doi = 10.1001/jama.2014.3266 }}</ref> and idiopathic hypersomnia<ref name="MallampalliCarter2014">{{cite journal | vauthors = Mallampalli MP, Carter CL | title = Exploring sex and gender differences in sleep health: a Society for Women's Health Research Report | journal = Journal of Women's Health | volume = 23 | issue = 7 | pages = 553–562 | date = July 2014 | pmid = 24956068 | pmc = 4089020 | doi = 10.1089/jwh.2014.4816 }}</ref> to 4:1 in CFS,<ref>{{cite web|url=https://www.womenshealth.gov/a-z-topics/chronic-fatigue-syndrome|title=Chronic fatigue syndrome|date=21 February 2017|website=womenshealth.gov|access-date=13 May 2019}}</ref> and 5:1 in POTS.<ref name="Ben2012">{{cite journal | vauthors = Benarroch EE | title = Postural tachycardia syndrome: a heterogeneous and multifactorial disorder | journal = Mayo Clinic Proceedings | volume = 87 | issue = 12 | pages = 1214–1225 | date = December 2012 | pmid = 23122672 | pmc = 3547546 | doi = 10.1016/j.mayocp.2012.08.013 }}</ref>
Line 56: Line 56:
Examples of sex-related illnesses and disorders in [[Male#Genetic determination|male humans]]:<ref name="Regitz‐Zagrosek"/>
Examples of sex-related illnesses and disorders in [[Male#Genetic determination|male humans]]:<ref name="Regitz‐Zagrosek"/>


* [[Prostate cancer]], [[testicular cancer]] and other diseases of the male reproductive system occur in men.<ref name="MNT">{{cite web |title=Prostate vs. testicular cancer: Similarities and differences |url=https://www.medicalnewstoday.com/articles/testicular-cancer-vs-prostate-cancer |website=Medical News Today |access-date=10 November 2021 |language=en |date=25 October 2021}}</ref>
* [[Prostate cancer]], [[testicular cancer]] and other diseases of the male reproductive system occur in males.<ref name="MNT">{{cite web |title=Prostate vs. testicular cancer: Similarities and differences |url=https://www.medicalnewstoday.com/articles/testicular-cancer-vs-prostate-cancer |website=Medical News Today |access-date=10 November 2021 |language=en |date=25 October 2021}}</ref>
* Diseases of [[X-linked recessive inheritance]], such as [[color blindness|colour blindness]], occur more frequently in men, and [[haemophilia]] A and B occur almost exclusively in men.<ref>{{cite web|url=https://www.nlm.nih.gov/medlineplus/hemophilia.html|title=U.S. National Library of Medicine|archive-url=https://web.archive.org/web/20071012095806/http://www.nlm.nih.gov/medlineplus/hemophilia.html|archive-date=12 October 2007|url-status=live|access-date=2 December 2007}}</ref>
* Diseases of [[X-linked recessive inheritance]], such as [[color blindness|colour blindness]], occur more frequently in males, and [[haemophilia]] A and B occur almost exclusively in males.<ref>{{cite web|url=https://www.nlm.nih.gov/medlineplus/hemophilia.html|title=U.S. National Library of Medicine|archive-url=https://web.archive.org/web/20071012095806/http://www.nlm.nih.gov/medlineplus/hemophilia.html|archive-date=12 October 2007|url-status=live|access-date=2 December 2007}}</ref>
* The presence of a single X chromosome in males (rather than two in females) may explain why males are more susceptible to genetic diseases linked to the X chromosome,<ref name="Barbara">{{cite journal | vauthors = Migeon BR | title = Why females are mosaics, X-chromosome inactivation, and sex differences in disease | journal = Gender Medicine | volume = 4 | issue = 2 | pages = 97–105 | date = June 2007 | pmid = 17707844 | doi = 10.1016/S1550-8579(07)80024-6 }}</ref><ref name="Brown">{{cite journal | vauthors = Brown C |title=Patchwork women |journal=Nature Genetics |date=September 2007 |volume=39 |issue=9 |pages=1043 |doi=10.1038/ng0907-1043 |s2cid=32145544 |doi-access=free }}</ref><ref name="Migeon">{{cite book | vauthors = Migeon BR |title=Females are mosaics : X inactivation and sex differences in disease |date=2014 |publisher=Oxford University Press |location=Oxford |isbn=978-0-19-992753-1 |edition=Second}}</ref> including [[hemophilia]], [[Duchenne muscular dystrophy]], and [[Hunter syndrome]].<ref name="Doblhammer">{{cite book | vauthors = Doblhammer D, Gumà J |title=A Demographic Perspective on Gender, Family and Health in Europe |date=February 12, 2018 |publisher=Springer |isbn=978-1-01-326907-3 |page=78 |url=https://books.google.com/books?id=MuBLDwAAQBAJ&pg=PA78 |access-date=11 November 2021}}</ref>
* The presence of a single X chromosome in males (rather than two in females) may explain why males are more susceptible to genetic diseases linked to the X chromosome,<ref name="Barbara">{{cite journal | vauthors = Migeon BR | title = Why females are mosaics, X-chromosome inactivation, and sex differences in disease | journal = Gender Medicine | volume = 4 | issue = 2 | pages = 97–105 | date = June 2007 | pmid = 17707844 | doi = 10.1016/S1550-8579(07)80024-6 }}</ref><ref name="Brown">{{cite journal | vauthors = Brown C |title=Patchwork women |journal=Nature Genetics |date=September 2007 |volume=39 |issue=9 |pages=1043 |doi=10.1038/ng0907-1043 |s2cid=32145544 |doi-access=free }}</ref><ref name="Migeon">{{cite book | vauthors = Migeon BR |title=Females are mosaics : X inactivation and sex differences in disease |date=2014 |publisher=Oxford University Press |location=Oxford |isbn=978-0-19-992753-1 |edition=Second}}</ref> including [[hemophilia]], [[Duchenne muscular dystrophy]], and [[Hunter syndrome]].<ref name="Doblhammer">{{cite book | vauthors = Doblhammer D, Gumà J |title=A Demographic Perspective on Gender, Family and Health in Europe |date=February 12, 2018 |publisher=Springer |isbn=978-1-01-326907-3 |page=78 |url=https://books.google.com/books?id=MuBLDwAAQBAJ&pg=PA78 |access-date=11 November 2021}}</ref>
* Certain [[neurodegenerative diseases]] ([[Parkinson's disease]] (2:1 ratio) and [[Lewy body dementia]] (4:1 ratio)) are more prevalent in males.<ref name="Ullah2019NeuroBioRev"/><ref>{{cite journal |last1=Latimer |first1=Caitlin S. |last2=Keene |first2=C. Dirk |last3=Flanagan |first3=Margaret E. |last4=Hemmy |first4=Laura S. |last5=Lim |first5=Kelvin O. |last6=White |first6=Lon R. |last7=Montine |first7=Kathleen S. |last8=Montine |first8=Thomas J. |title=Resistance to Alzheimer Disease Neuropathologic Changes and Apparent Cognitive Resilience in the Nun and Honolulu-Asia Aging Studies |journal=Journal of Neuropathology and Experimental Neurology |date=1 June 2017 |volume=76 |issue=6 |pages=458–466 |doi=10.1093/jnen/nlx030 |pmid=28499012 |pmc=6334750 |issn=1554-6578}}</ref> Parkinson's also displays phenotypic differences: males are more likely to present with sleep disturbances and deficits in verbal fluency and facial expression.<ref name="Ullah2019NeuroBioRev">{{cite journal |last1=Ullah |first1=Mohammad Fahad |last2=Ahmad |first2=Aamir |last3=Bhat |first3=Showket Hussain |last4=Abu-Duhier |first4=Faisel M. |last5=Barreto |first5=George E. |last6=Ashraf |first6=Ghulam Md |title=Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders |journal=Neuroscience & Biobehavioral Reviews |date=1 July 2019 |volume=102 |pages=95–105 |doi=10.1016/j.neubiorev.2019.04.003 |pmid=30959072 |s2cid=102487049 |url=https://www.sciencedirect.com/science/article/pii/S014976341830811X |access-date=28 December 2021 |language=en |issn=0149-7634}}</ref>
* Certain [[neurodegenerative diseases]] ([[Parkinson's disease]] (2:1 ratio) and [[Lewy body dementia]] (4:1 ratio)) are more prevalent in males.<ref name="Ullah2019NeuroBioRev"/><ref>{{cite journal |last1=Latimer |first1=Caitlin S. |last2=Keene |first2=C. Dirk |last3=Flanagan |first3=Margaret E. |last4=Hemmy |first4=Laura S. |last5=Lim |first5=Kelvin O. |last6=White |first6=Lon R. |last7=Montine |first7=Kathleen S. |last8=Montine |first8=Thomas J. |title=Resistance to Alzheimer Disease Neuropathologic Changes and Apparent Cognitive Resilience in the Nun and Honolulu-Asia Aging Studies |journal=Journal of Neuropathology and Experimental Neurology |date=1 June 2017 |volume=76 |issue=6 |pages=458–466 |doi=10.1093/jnen/nlx030 |pmid=28499012 |pmc=6334750 |issn=1554-6578}}</ref> Parkinson's also displays phenotypic differences: males are more likely to present with sleep disturbances and deficits in verbal fluency and facial expression.<ref name="Ullah2019NeuroBioRev">{{cite journal |last1=Ullah |first1=Mohammad Fahad |last2=Ahmad |first2=Aamir |last3=Bhat |first3=Showket Hussain |last4=Abu-Duhier |first4=Faisel M. |last5=Barreto |first5=George E. |last6=Ashraf |first6=Ghulam Md |title=Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders |journal=Neuroscience & Biobehavioral Reviews |date=1 July 2019 |volume=102 |pages=95–105 |doi=10.1016/j.neubiorev.2019.04.003 |pmid=30959072 |s2cid=102487049 |url=https://www.sciencedirect.com/science/article/pii/S014976341830811X |access-date=28 December 2021 |language=en |issn=0149-7634}}</ref>
* [[Abdominal aortic aneurysm]]s are six times more common in men, and thus some countries have introduced screening for males at risk of developing the condition.<ref name="aneurysm">{{cite news|title=Men to get aneurysm screening|url=http://news.bbc.co.uk/2/hi/health/7172094.stm|access-date=6 June 2016|work=BBC|date=5 January 2008}}</ref>
* [[Abdominal aortic aneurysm]]s are six times more common in males, and thus some countries have introduced screening for males at risk of developing the condition.<ref name="aneurysm">{{cite news|title=Men to get aneurysm screening|url=http://news.bbc.co.uk/2/hi/health/7172094.stm|access-date=6 June 2016|work=BBC|date=5 January 2008}}</ref>
* [[Sex differences in autism|Autism]] is approximately four times more prevalent in males than females.<ref name=Newschaffer>{{cite journal | vauthors = Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, Mandell DS, Miller LA, Pinto-Martin J, Reaven J, Reynolds AM, Rice CE, Schendel D, Windham GC | display-authors = 6 | title = The epidemiology of autism spectrum disorders | journal = Annual Review of Public Health | volume = 28 | pages = 235–258 | year = 2007 | pmid = 17367287 | doi = 10.1146/annurev.publhealth.28.021406.144007 | doi-access = free }}</ref> Males also have distinct autism phenotypes compared to females, including a higher prevalence of restrictive and repetitive behaviors.<ref>{{cite journal |last1=Werling |first1=Donna M. |last2=Geschwind |first2=Daniel H. |title=Sex differences in autism spectrum disorders |journal=Current Opinion in Neurology |date=April 2013 |volume=26 |issue=2 |pages=146–153 |doi=10.1097/WCO.0b013e32835ee548 |pmid=23406909 |pmc=4164392 }}</ref>
* [[Sex differences in autism|Autism]] is approximately four times more prevalent in males than females.<ref name=Newschaffer>{{cite journal | vauthors = Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, Mandell DS, Miller LA, Pinto-Martin J, Reaven J, Reynolds AM, Rice CE, Schendel D, Windham GC | display-authors = 6 | title = The epidemiology of autism spectrum disorders | journal = Annual Review of Public Health | volume = 28 | pages = 235–258 | year = 2007 | pmid = 17367287 | doi = 10.1146/annurev.publhealth.28.021406.144007 | doi-access = free }}</ref> Males also have distinct autism phenotypes compared to females, including a higher prevalence of restrictive and repetitive behaviors.<ref>{{cite journal |last1=Werling |first1=Donna M. |last2=Geschwind |first2=Daniel H. |title=Sex differences in autism spectrum disorders |journal=Current Opinion in Neurology |date=April 2013 |volume=26 |issue=2 |pages=146–153 |doi=10.1097/WCO.0b013e32835ee548 |pmid=23406909 |pmc=4164392 }}</ref>
*Males have increased risk of [[athetoid cerebral palsy|dyskinetic cerebral palsy]] and [[spastic diplegia]], as well as lower limb deformities.<ref name="sdpalsy">{{cite journal | vauthors = Romeo DM, Sini F, Brogna C, Albamonte E, Ricci D, Mercuri E | title = Sex differences in cerebral palsy on neuromotor outcome: a critical review | journal = Developmental Medicine and Child Neurology | volume = 58 | issue = 8 | pages = 809–813 | date = August 2016 | pmid = 27098195 | doi = 10.1111/dmcn.13137 | doi-access = free }}</ref>
*Males have increased risk of [[athetoid cerebral palsy|dyskinetic cerebral palsy]] and [[spastic diplegia]], as well as lower limb deformities.<ref name="sdpalsy">{{cite journal | vauthors = Romeo DM, Sini F, Brogna C, Albamonte E, Ricci D, Mercuri E | title = Sex differences in cerebral palsy on neuromotor outcome: a critical review | journal = Developmental Medicine and Child Neurology | volume = 58 | issue = 8 | pages = 809–813 | date = August 2016 | pmid = 27098195 | doi = 10.1111/dmcn.13137 | doi-access = free }}</ref>
*[[Schizophrenia]] is about 1.4 times as common in males, and on average starts two years earlier and has more severe symptoms.<ref name="BMJ07">{{cite journal | vauthors = Picchioni MM, Murray RM | title = Schizophrenia | journal = BMJ | volume = 335 | issue = 7610 | pages = 91–95 | date = July 2007 | pmid = 17626963 | pmc = 1914490 | doi = 10.1136/bmj.39227.616447.BE }}</ref>
*[[Schizophrenia]] is about 1.4 times as common in males, and on average starts two years earlier and has more severe symptoms.<ref name="BMJ07">{{cite journal | vauthors = Picchioni MM, Murray RM | title = Schizophrenia | journal = BMJ | volume = 335 | issue = 7610 | pages = 91–95 | date = July 2007 | pmid = 17626963 | pmc = 1914490 | doi = 10.1136/bmj.39227.616447.BE }}</ref>
* More than two times more men than women are affected by [[antisocial personality disorder]] and [[substance use disorder]].<ref>{{cite journal|author4-link=Andrew E. Skodol | vauthors = Alegria AA, Blanco C, Petry NM, Skodol AE, Liu SM, Grant B, Hasin D | title = Sex differences in antisocial personality disorder: results from the National Epidemiological Survey on Alcohol and Related Conditions | journal = Personality Disorders | volume = 4 | issue = 3 | pages = 214–222 | date = July 2013 | pmid = 23544428 | pmc = 3767421 | doi = 10.1037/a0031681 }}</ref><ref name=":0">{{Cite book|title=The American Psychiatric Publishing Textbook of Substance Abuse Treatment| veditors = Galanter M, Kleber HD, Brady KT |date=17 December 2014|isbn=978-1-58562-472-0|doi=10.1176/appi.books.9781615370030| last1 = Galanter | first1 = Marc | last2 = Kleber | first2 = Herbert D. | last3 = Brady | first3 = Kathleen T. }}</ref>
* More than two times more males than females are affected by [[antisocial personality disorder]] and [[substance use disorder]].<ref>{{cite journal|author4-link=Andrew E. Skodol | vauthors = Alegria AA, Blanco C, Petry NM, Skodol AE, Liu SM, Grant B, Hasin D | title = Sex differences in antisocial personality disorder: results from the National Epidemiological Survey on Alcohol and Related Conditions | journal = Personality Disorders | volume = 4 | issue = 3 | pages = 214–222 | date = July 2013 | pmid = 23544428 | pmc = 3767421 | doi = 10.1037/a0031681 }}</ref><ref name=":0">{{Cite book|title=The American Psychiatric Publishing Textbook of Substance Abuse Treatment| veditors = Galanter M, Kleber HD, Brady KT |date=17 December 2014|isbn=978-1-58562-472-0|doi=10.1176/appi.books.9781615370030| last1 = Galanter | first1 = Marc | last2 = Kleber | first2 = Herbert D. | last3 = Brady | first3 = Kathleen T. }}</ref>
*Several cancers, including [[stomach cancer]] (2:1),<ref name="WCR2014">{{cite book|title=World Cancer Report 2014|date=2014|publisher=World Health Organization|isbn=978-9283204299|pages=Chapter 5.4}}</ref> [[oesophageal cancer]] (3:1),<ref name="WCR20142">{{cite book|title=World Cancer Report 2014| vauthors = Montgomery EA |date=2014|publisher=World Health Organization|isbn=978-9283204299| veditors = Stewart BW, Wild CP |pages=528–543|chapter=Oesophageal Cancer }}</ref> [[liver cancer]] (2:1 to 4:1)<ref>{{cite journal | vauthors = Hefaiedh R, Ennaifer R, Romdhane H, Ben Nejma H, Arfa N, Belhadj N, Gharbi L, Khalfallah T | display-authors = 6 | title = Gender difference in patients with hepatocellular carcinoma | journal = La Tunisie Médicale | volume = 91 | issue = 8–9 | pages = 505–508 | date = Aug–Sep 2013 | pmid = 24227507 }}</ref> and [[oral cancer]] (2:1 to 3:1),<ref name=":11">{{cite journal | vauthors = Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Curado MP, Ferlay J, Franceschi S, Rosenberg PS, Bray F, Gillison ML | display-authors = 6 | title = Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers | journal = Journal of Clinical Oncology | volume = 31 | issue = 36 | pages = 4550–4559 | date = December 2013 | pmid = 24248688 | pmc = 3865341 | doi = 10.1200/jco.2013.50.3870 }}</ref> which have mostly lifestyle-based risk factors, are more common in men.
*Several cancers, including [[stomach cancer]] (2:1),<ref name="WCR2014">{{cite book|title=World Cancer Report 2014|date=2014|publisher=World Health Organization|isbn=978-9283204299|pages=Chapter 5.4}}</ref> [[oesophageal cancer]] (3:1),<ref name="WCR20142">{{cite book|title=World Cancer Report 2014| vauthors = Montgomery EA |date=2014|publisher=World Health Organization|isbn=978-9283204299| veditors = Stewart BW, Wild CP |pages=528–543|chapter=Oesophageal Cancer }}</ref> [[liver cancer]] (2:1 to 4:1)<ref>{{cite journal | vauthors = Hefaiedh R, Ennaifer R, Romdhane H, Ben Nejma H, Arfa N, Belhadj N, Gharbi L, Khalfallah T | display-authors = 6 | title = Gender difference in patients with hepatocellular carcinoma | journal = La Tunisie Médicale | volume = 91 | issue = 8–9 | pages = 505–508 | date = Aug–Sep 2013 | pmid = 24227507 }}</ref> and [[oral cancer]] (2:1 to 3:1),<ref name=":11">{{cite journal | vauthors = Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Curado MP, Ferlay J, Franceschi S, Rosenberg PS, Bray F, Gillison ML | display-authors = 6 | title = Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers | journal = Journal of Clinical Oncology | volume = 31 | issue = 36 | pages = 4550–4559 | date = December 2013 | pmid = 24248688 | pmc = 3865341 | doi = 10.1200/jco.2013.50.3870 }}</ref> which have mostly lifestyle-based risk factors, are more common in males.
* Males are more likely to experience severe outcomes from [[Virus|viral]] [[respiratory tract infections]] than females, at younger and older ages.<ref name="Ursin">{{cite journal | vauthors = Ursin RL, Klein SL | title = Sex Differences in Respiratory Viral Pathogenesis and Treatments | journal = Annual Review of Virology | volume = 8 | issue = 1 | pages = 393–414 | date = September 2021 | pmid = 34081540 | doi = 10.1146/annurev-virology-091919-092720 | doi-access = free }}</ref>
* Males are more likely to experience severe outcomes from [[Virus|viral]] [[respiratory tract infections]] than females, at younger and older ages.<ref name="Ursin">{{cite journal | vauthors = Ursin RL, Klein SL | title = Sex Differences in Respiratory Viral Pathogenesis and Treatments | journal = Annual Review of Virology | volume = 8 | issue = 1 | pages = 393–414 | date = September 2021 | pmid = 34081540 | doi = 10.1146/annurev-virology-091919-092720 | s2cid = 235333732 | doi-access =free }}</ref>
* [[Tuberculosis]] is more common in men.<ref>{{cite journal | vauthors = Hertz D, Schneider B | title = Sex differences in tuberculosis | journal = Seminars in Immunopathology | volume = 41 | issue = 2 | pages = 225–237 | date = March 2019 | pmid = 30361803 | doi = 10.1007/s00281-018-0725-6 | s2cid = 53030554 }}</ref>
* [[Tuberculosis]] is more common in males.<ref>{{cite journal | vauthors = Hertz D, Schneider B | title = Sex differences in tuberculosis | journal = Seminars in Immunopathology | volume = 41 | issue = 2 | pages = 225–237 | date = March 2019 | pmid = 30361803 | doi = 10.1007/s00281-018-0725-6 | s2cid = 53030554 }}</ref>
* In cases of [[preterm birth]], being male is associated with higher mortality and morbidity in terms of respiratory distress, cardiovascular disorders (specifically hypotension), neurodevelopmental disorders, and immune disorders.<ref>{{cite journal | vauthors = O'Driscoll DN, McGovern M, Greene CM, Molloy EJ | title = Gender disparities in preterm neonatal outcomes | journal = Acta Paediatrica | volume = 107 | issue = 9 | pages = 1494–1499 | date = May 2018 | pmid = 29750838 | doi = 10.1111/apa.14390 | s2cid = 21676905 }}</ref>
* In cases of [[preterm birth]], being male is associated with higher mortality and morbidity in terms of respiratory distress, cardiovascular disorders (specifically hypotension), neurodevelopmental disorders, and immune disorders.<ref>{{cite journal | vauthors = O'Driscoll DN, McGovern M, Greene CM, Molloy EJ | title = Gender disparities in preterm neonatal outcomes | journal = Acta Paediatrica | volume = 107 | issue = 9 | pages = 1494–1499 | date = May 2018 | pmid = 29750838 | doi = 10.1111/apa.14390 | s2cid = 21676905 | doi-access = free }}</ref>
* Although both males and females can have [[eating disorder]]s, males are less likely to be diagnosed and receive treatment.<ref>{{cite journal |last1=Gorrell |first1=Sasha |last2=Murray |first2=Stuart B. |title=Eating Disorders in Males |journal=Child and Adolescent Psychiatric Clinics of North America |date=October 2019 |volume=28 |issue=4 |pages=641–651 |doi=10.1016/j.chc.2019.05.012 |pmid=31443881 |pmc=6785984 |issn=1558-0490}}</ref><ref>{{cite journal |last1=Strother |first1=Eric |last2=Lemberg |first2=Raymond |last3=Stanford |first3=Stevie Chariese |last4=Turberville |first4=Dayton |title=Eating Disorders in Men: Underdiagnosed, Undertreated, and Misunderstood |journal=Eating Disorders |date=October 2012 |volume=20 |issue=5 |pages=346–355 |doi=10.1080/10640266.2012.715512 |pmid=22985232 |pmc=3479631 |language=en |issn=1064-0266}}</ref><ref>{{cite journal |last1=Nagata |first1=Jason M. |last2=Ganson |first2=Kyle T. |last3=Murray |first3=Stuart B. |title=Eating disorders in adolescent boys and young men: an update |journal=Current Opinion in Pediatrics |date=August 2020 |volume=32 |issue=4 |pages=476–481 |doi=10.1097/MOP.0000000000000911 |pmid=32520822 |pmc=7867380 |language=en}}</ref>
* Although both males and females can have [[eating disorder]]s, males are less likely to be diagnosed and receive treatment.<ref>{{cite journal |last1=Gorrell |first1=Sasha |last2=Murray |first2=Stuart B. |title=Eating Disorders in Males |journal=Child and Adolescent Psychiatric Clinics of North America |date=October 2019 |volume=28 |issue=4 |pages=641–651 |doi=10.1016/j.chc.2019.05.012 |pmid=31443881 |pmc=6785984 |issn=1558-0490}}</ref><ref>{{cite journal |last1=Strother |first1=Eric |last2=Lemberg |first2=Raymond |last3=Stanford |first3=Stevie Chariese |last4=Turberville |first4=Dayton |title=Eating Disorders in Men: Underdiagnosed, Undertreated, and Misunderstood |journal=Eating Disorders |date=October 2012 |volume=20 |issue=5 |pages=346–355 |doi=10.1080/10640266.2012.715512 |pmid=22985232 |pmc=3479631 |language=en |issn=1064-0266}}</ref><ref>{{cite journal |last1=Nagata |first1=Jason M. |last2=Ganson |first2=Kyle T. |last3=Murray |first3=Stuart B. |title=Eating disorders in adolescent boys and young men: an update |journal=Current Opinion in Pediatrics |date=August 2020 |volume=32 |issue=4 |pages=476–481 |doi=10.1097/MOP.0000000000000911 |pmid=32520822 |pmc=7867380 |language=en}}</ref>
* [[Klinefelter syndrome]] ([[karyotype]] XXY) is the most common sex chromosome [[aneuploidy]] (occurring in ~152/100,000 births, only in males). It is often subclinical, but can cause infertility, tall stature, [[gynecomastia]] (enlargement of the breast tissue), limited facial and body hair, and [[microorchidism|small firm testicles]].<ref>{{cite journal |last1=Stormont |first1=Gavin D. |last2=Deibert |first2=Christopher M. |title=Genetic causes and management of male infertility |journal=Translational Andrology and Urology |date=March 2021 |volume=10 |issue=3 |pages=1365–1372 |doi=10.21037/tau.2020.03.34 |pmid=33850772 |pmc=8039619 |language=en}}</ref><ref>{{cite journal |last1=Shah |first1=K |last2=Sivapalan |first2=G |last3=Gibbons |first3=N |last4=Tempest |first4=H |last5=Griffin |first5=Dk |title=The genetic basis of infertility |journal=Reproduction |date=1 July 2003 |volume=126 |issue=1 |pages=13–25 |doi=10.1530/rep.0.1260013 |pmid=12814343 |quote=Klinefelter syndrome and the subsequent infertility phenotype caused by it are specific to males.|doi-access=free }}</ref>
* [[Klinefelter syndrome]] ([[karyotype]] XXY) is the most common sex chromosome [[aneuploidy]] (occurring in ~152/100,000 births, only in males). It is often subclinical, but can cause infertility, tall stature, [[gynecomastia]] (enlargement of the breast tissue), limited facial and body hair, and [[microorchidism|small firm testicles]].<ref>{{cite journal |last1=Stormont |first1=Gavin D. |last2=Deibert |first2=Christopher M. |title=Genetic causes and management of male infertility |journal=Translational Andrology and Urology |date=March 2021 |volume=10 |issue=3 |pages=1365–1372 |doi=10.21037/tau.2020.03.34 |pmid=33850772 |pmc=8039619 |language=en |doi-access=free }}</ref><ref>{{cite journal |last1=Shah |first1=K |last2=Sivapalan |first2=G |last3=Gibbons |first3=N |last4=Tempest |first4=H |last5=Griffin |first5=Dk |title=The genetic basis of infertility |journal=Reproduction |date=1 July 2003 |volume=126 |issue=1 |pages=13–25 |doi=10.1530/rep.0.1260013 |pmid=12814343 |quote=Klinefelter syndrome and the subsequent infertility phenotype caused by it are specific to males.|doi-access=free }}</ref>

==Reasons for sex diffrences in incidence and prevalence==
===Hypertension===
Hypertension is a worldwide disease affecting the sexes.<ref>{{cite web |last1=NCD Risk Factor Collaboration |title=Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants |url=https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(16)31919-5/fulltext |publisher=Lancet |access-date=15 June 2024}}</ref> Women are less frequently affected by high blood pressure . Since blood pressure rises in women after menopause,<ref>{{cite web |last1=Izumi |first1=Yoichi |last2=Matsumoto |first2=Koichi |last3=Ozawa |first3=Yukio |last4=Kasamaki |first4=Yuji |last5=Shinndo |first5=Atsusi |last6=Ohta |first6=Masakatsu |last7=Jumabay |first7=Madet |last8=Nakayama |first8=Tomohiro |last9=Yokoyama |first9=Eise |last10=Shimabukuro |first10=Hiroaki |last11=Kawamura |first11=Hiroshi |last12=Cheng |first12=Zuheng |last13=Ma |first13=Yitong |last14=Mahmut |first14=Masum |title=Effect of Age at Menopause on Blood Pressure in Postmenopausal Women |url=https://www.sciencedirect.com/science/article/abs/pii/S0895706107002725 |website=American Journal of Hypertension |access-date=15 June 2024 |pages=1045–1050 |doi=10.1016/j.amjhyper.2007.04.019 |date=1 October 2007}}</ref> this suggests that the cause of the sex-specific differences lies not only in possible external factors, such as lifestyle, but also in the sex hormones . It is likely due to sex hormones not external factors. One possible mechanism is the influence of the renin-angiotensin system (RAS).<ref>{{cite web |last1=Reckelhoff |first1=Jane F. |title=Mechanisms of sex and gender differences in hypertension |url=https://www.nature.com/articles/s41371-023-00810-4 |website=Journal of Human Hypertension |access-date=15 June 2024 |pages=596–601 |language=en |doi=10.1038/s41371-023-00810-4 |date=August 2023}}</ref>

Angiotensinogen (liver) is converted into angiotensin I (Ang I) by renin (kidney). Ang I is converted to angiotensin II (Ang II) by the angiotensin-converting enzyme (ACE). This binds to the Ang II type I receptor (A2T1), which causes vasoconstriction and water and sodium reabsorption in the kidneys, and in turn increases blood pressure.

Less well known is that Ang II can also bind to Ang II type II receptor (A2T2) or be converted by angiotensin-converting enzyme II (ACE II) into angiotensin III (Ang III), which binds to MAS receptors.<ref>{{cite web |last1=Miller |first1=Amanda J. |last2=Arnold |first2=Amy C. |title=The renin-angiotensin system and cardiovascular autonomic control in aging |url=https://www.sciencedirect.com/science/article/abs/pii/S0196978121002412 |website=Peptides |pages=170733 |doi=10.1016/j.peptides.2021.170733 |date=1 April 2022}}</ref> Both A2T2 and MAS receptors trigger vasodilation.<ref>{{cite web |last1=Reckelhoff |first1=Jane F. |title=Mechanisms of sex and gender differences in hypertension |url=https://www.nature.com/articles/s41371-023-00810-4 |website=Journal of Human Hypertension |pages=596–601 |language=en |doi=10.1038/s41371-023-00810-4 |date=August 2023}}</ref>
Animal experiments have shown that female ovariectomised mice treated chronically with testosterone have increased blood pressure (mean arterial pressure ~180mmHg) compared to female mice from the control group (~155mmHg).<ref>{{cite web |last1=Reckelhoff |first1=Jane F. |last2=Zhang |first2=Huimin |last3=Srivastava |first3=Kumud |title=Gender Differences in Development of Hypertension in Spontaneously Hypertensive Rats: Role of the Renin-Angiotensin System |url=https://www.ahajournals.org/doi/pdf/10.1161/01.hyp.35.1.480 |website=Hypertension |pages=480–483 |language=en |doi=10.1161/01.HYP.35.1.480 |date=January 2000}}</ref> This difference was reduced by ACE inhibition (enalapril (250 mg/L)) in both groups to a similar level ( ~115mmHg).<ref>{{cite web |last1=Miller |first1=Amanda J. |last2=Arnold |first2=Amy C. |title=The renin-angiotensin system and cardiovascular autonomic control in aging |url=https://www.sciencedirect.com/science/article/abs/pii/S0196978121002412 |website=Peptides |pages=170733 |doi=10.1016/j.peptides.2021.170733 |date=1 April 2022}}</ref> It can therefore be assumed that male androgens have an high increasing influence (up to 25mmHg in middle blood pressure) on angiotensinogen.<ref>{{cite web |last1=Miller |first1=Amanda J. |last2=Arnold |first2=Amy C. |title=The renin-angiotensin system and cardiovascular autonomic control in aging |url=https://www.sciencedirect.com/science/article/abs/pii/S0196978121002412 |website=Peptides |pages=170733 |doi=10.1016/j.peptides.2021.170733 |date=1 April 2022}}</ref>


== See also ==
== See also ==

Revision as of 07:13, 19 June 2024

Sex differences in medicine include sex-specific diseases or conditions which occur only in people of one sex due to underlying biological factors (for example, prostate cancer in males or uterine cancer in females); sex-related diseases, which are diseases that are more common to one sex (for example, breast cancer and systemic lupus erythematosus which occur predominantly in females);[1] and diseases which occur at similar rates in males and females but manifest differently according to sex (for example, peripheral artery disease).[2]

Sex differences should not be confused with gender differences. The US National Academy of Medicine recognizes sex differences as biological at the chromosomal and anatomical levels, whereas gender differences are based on self-representation and other factors including biology, environment and experience.[3][4] That said, both biological and behavioural differences influence human health, and may do so differentially. Such factors can be inter-related and difficult to separate. Evidence-based approaches to sex and gender medicine try to examine the effects of both sex and gender as factors when dealing with medical conditions that may affect populations differently.[5][6][3]

As of 2021, over 10,000 articles had been published addressing sex and gender differences in clinical medicine and related literature.[citation needed] Sex and gender affect cardiovascular,[7] pulmonary[8] and autoimmune systems,[9][10] gastroenterology,[11][12][13] hepatology,[5] nephrology,[14] endocrinology,[15][16] haematology,[17] neurology,[18][19][20][21] pharmacokinetics, and pharmacodynamics.[22][23][6][3]

Sexually transmitted infections, which have a significant probability of transmission through sexual contact, can be contracted by either sex. Their occurrence may reflect economic and social as well as biological factors, leading to sex differences in the transmission, prevalence, and disease burden of STIs.[24]

Historically, medical research has primarily been conducted using the male body as the basis for clinical studies. The findings of these studies have often been applied across the sexes, and healthcare providers have traditionally assumed a uniform approach in treating both male and female patients. More recently, medical research has started to understand the importance of taking sex into account as evidence increases that the symptoms and responses to medical treatment may be very different between sexes.[25]

Background

Females and males exhibit many differences in terms of risk of developing disease, receiving an accurate diagnosis, and responding to treatments. A patient's sex has been increasingly recognized as one of the most important modulators of clinical decision making.[26] Sex differences have been found across a broad range of disease areas, including many diseases which are sex-specific. The sex chromosome complement and sex hormone environment are known to be the primary constitutive difference between females and males.[27] The imbalance of gene expression between the X and Y chromosomes is present within virtually all cells in the human body. Sex hormones are crucial in body development and function and also thought to contribute to sex differences in some diseases.[28] It is suspected that many differences between the sexes are also influenced by social, environmental, and psychological factors which are difficult to tease apart from biological ones.[4]

Causes

Sex-related illnesses have various causes:[5]

  • Genetic sex differences start at conception depending on whether an ovum fuses with a sperm cell carrying an X or a Y chromosome. This leads to sex-based differences at the molecular level for all male and female cells.[5]
  • In males, the X chromosome carries only maternal imprints, while in females X chromosomes are present with both maternal and paternal imprints. In female cells, random processes of X-inactivation "turn off" the extra X chromosome. As a result, females, but not males, are mosaics. Female cells may express higher levels of some genes.[29][30][31]
  • Sex differences at the chromosome and molecular level exist in all human cells, and persist life-long, independent of sex hormones in the body.[5]
  • Sex-linked genetic conditions that differ in males and females may reflect the effects of genetic damage on an X chromosome. In some cases, the presence of an "extra" X chromosome in female cells may lessen the impact of such damage. In severe cases, males may die during development and females may survive but display a sex-linked illness.[29]
  • The reproductive system develops differently for each sex. Sex-specific parts of the male and female reproductive systems affect the rest of the body and also can be affected differently by diseases.[32]
  • Socially constructed norms relate to gender roles, relationships, positional power, and a wide variety of behaviours. Norms affect people differentially depending on their sex and gender.[5]
  • Different levels of prevention, reporting, diagnosis, and treatment have been observed based on sex and gender.[5]

Females

Examples of sex-related illnesses and disorders in human females:[6]

Males

Examples of sex-related illnesses and disorders in male humans:[6]

Reasons for sex diffrences in incidence and prevalence

Hypertension

Hypertension is a worldwide disease affecting the sexes.[82] Women are less frequently affected by high blood pressure . Since blood pressure rises in women after menopause,[83] this suggests that the cause of the sex-specific differences lies not only in possible external factors, such as lifestyle, but also in the sex hormones . It is likely due to sex hormones not external factors. One possible mechanism is the influence of the renin-angiotensin system (RAS).[84]

Angiotensinogen (liver) is converted into angiotensin I (Ang I) by renin (kidney). Ang I is converted to angiotensin II (Ang II) by the angiotensin-converting enzyme (ACE). This binds to the Ang II type I receptor (A2T1), which causes vasoconstriction and water and sodium reabsorption in the kidneys, and in turn increases blood pressure.

Less well known is that Ang II can also bind to Ang II type II receptor (A2T2) or be converted by angiotensin-converting enzyme II (ACE II) into angiotensin III (Ang III), which binds to MAS receptors.[85] Both A2T2 and MAS receptors trigger vasodilation.[86]

Animal experiments have shown that female ovariectomised mice treated chronically with testosterone have increased blood pressure (mean arterial pressure ~180mmHg) compared to female mice from the control group (~155mmHg).[87] This difference was reduced by ACE inhibition (enalapril (250 mg/L)) in both groups to a similar level ( ~115mmHg).[88] It can therefore be assumed that male androgens have an high increasing influence (up to 25mmHg in middle blood pressure) on angiotensinogen.[89]

See also

References

  1. ^ Ngo ST, Steyn FJ, McCombe PA (August 2014). "Gender differences in autoimmune disease". Frontiers in Neuroendocrinology. 35 (3): 347–369. doi:10.1016/j.yfrne.2014.04.004. PMID 24793874.
  2. ^ Barochiner J, Aparicio LS, Waisman GD (2014). "Challenges associated with peripheral arterial disease in women". Vascular Health and Risk Management. 10: 115–128. doi:10.2147/vhrm.s45181. PMC 3956880. PMID 24648743.
  3. ^ a b c Oertelt-Prigione S, Regitz-Zagrosek V, eds. (2012). Sex and Gender Aspects in Clinical Medicine. London, UK: Springer Science & Business Media. ISBN 978-1-4471-6002-1.
  4. ^ a b Institute of Medicine (US) Committee on Understanding the Biology of Sex and Gender Differences. (2001). Wizemann TM, Pardue ML (eds.). Exploring the Biological Contributions to Human Health: Does Sex Matter?. Washington (DC): National Academies Press (. ISBN 978-0-309-07281-6. PMID 25057540.
  5. ^ a b c d e f g Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, et al. (August 2020). "Sex and gender: modifiers of health, disease, and medicine". Lancet. 396 (10250): 565–582. doi:10.1016/S0140-6736(20)31561-0. PMC 7440877. PMID 32828189.
  6. ^ a b c d Regitz-Zagrosek V (June 2012). "Sex and gender differences in health. Science & Society Series on Sex and Science". EMBO Reports. 13 (7): 596–603. doi:10.1038/embor.2012.87. PMC 3388783. PMID 22699937.
  7. ^ Miller VM (May 2020). "Universality of sex differences in cardiovascular outcomes: where do we go from here?". European Heart Journal. 41 (17): 1697–1699. doi:10.1093/eurheartj/ehaa310. PMC 7194182. PMID 32357237.
  8. ^ Weatherald J, Riha RL, Humbert M (December 2021). "Sex and gender in lung health and disease: more than just Xs and Ys". European Respiratory Review. 30 (162): 210217. doi:10.1183/16000617.0217-2021. PMC 9488524. PMID 34750117. S2CID 243861859.
  9. ^ a b Rose NR, Bona C (September 1993). "Defining criteria for autoimmune diseases (Witebsky's postulates revisited)". Immunology Today. 14 (9): 426–430. doi:10.1016/0167-5699(93)90244-F. PMID 8216719.
  10. ^ a b Hayter SM, Cook MC (August 2012). "Updated assessment of the prevalence, spectrum and case definition of autoimmune disease". Autoimmunity Reviews. 11 (10): 754–765. doi:10.1016/j.autrev.2012.02.001. PMID 22387972.
  11. ^ Greuter T, Manser C, Pittet V, Vavricka SR, Biedermann L (2020). "Gender Differences in Inflammatory Bowel Disease". Digestion. 101 (1): 98–104. doi:10.1159/000504701. PMID 31995797. S2CID 210946741.
  12. ^ van Kessel L, Teunissen D, Lagro-Janssen T (March 2021). "Sex-Gender Differences in the Effectiveness of Treatment of Irritable Bowel Syndrome: A Systematic Review". International Journal of General Medicine. 14: 867–884. doi:10.2147/IJGM.S291964. PMC 7979326. PMID 33758534.
  13. ^ Fracas E, Costantino A, Vecchi M, Buoli M. Depressive and Anxiety Disorders in Patients with Inflammatory Bowel Diseases: Are There Any Gender Differences? International Journal of Environmental Research and Public Health. 2023; 20(13):6255. https://doi.org/10.3390/ijerph20136255
  14. ^ Bairey Merz CN, Dember LM, Ingelfinger JR, Vinson A, Neugarten J, Sandberg KL, et al. (December 2019). "Sex and the kidneys: current understanding and research opportunities". Nature Reviews. Nephrology. 15 (12): 776–783. doi:10.1038/s41581-019-0208-6. PMC 7745509. PMID 31586165.
  15. ^ Bhargava A, Arnold AP, Bangasser DA, Denton KM, Gupta A, Hilliard Krause LM, et al. (May 2021). "Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement". Endocrine Reviews. 42 (3): 219–258. doi:10.1210/endrev/bnaa034. PMC 8348944. PMID 33704446.
  16. ^ Lauretta R, Sansone M, Sansone A, Romanelli F, Appetecchia M (21 October 2018). "Gender in Endocrine Diseases: Role of Sex Gonadal Hormones". International Journal of Endocrinology. 2018: 4847376. doi:10.1155/2018/4847376. PMC 6215564. PMID 30420884.
  17. ^ Murphy WG (March 2014). "The sex difference in haemoglobin levels in adults - mechanisms, causes, and consequences". Blood Reviews. 28 (2): 41–47. doi:10.1016/j.blre.2013.12.003. PMID 24491804.
  18. ^ Clayton JA (December 2016). "Sex influences in neurological disorders: case studies and perspectives". Dialogues in Clinical Neuroscience. 18 (4): 357–360. doi:10.31887/DCNS.2016.18.4/jclayton. PMC 5286721. PMID 28179807.
  19. ^ Institute of Medicine (2011). Sex Differences and Implications for Translational Neuroscience Research : Workshop Summary. Washington, DC: National Academies Press. ISBN 978-0-309-16124-4.
  20. ^ Rippon G, Eliot L, Genon S, Joel D (May 2021). "How hype and hyperbole distort the neuroscience of sex differences". PLOS Biology. 19 (5): e3001253. doi:10.1371/journal.pbio.3001253. PMC 8136838. PMID 33970901.
  21. ^ Shansky RM, Murphy AZ (April 2021). "Considering sex as a biological variable will require a global shift in science culture". Nature Neuroscience. 24 (4): 457–464. doi:10.1038/s41593-021-00806-8. PMID 33649507. S2CID 232091204.
  22. ^ Zucker I, Prendergast BJ (June 2020). "Sex differences in pharmacokinetics predict adverse drug reactions in women". Biology of Sex Differences. 11 (1): 32. doi:10.1186/s13293-020-00308-5. PMC 7275616. PMID 32503637.
  23. ^ Soldin OP, Mattison DR (2009). "Sex differences in pharmacokinetics and pharmacodynamics". Clinical Pharmacokinetics. 48 (3): 143–157. doi:10.2165/00003088-200948030-00001. PMC 3644551. PMID 19385708.
  24. ^ Madkan VK, Giancola AA, Sra KK, Tyring SK (March 2006). "Sex differences in the transmission, prevention, and disease manifestations of sexually transmitted diseases". Archives of Dermatology. 142 (3): 365–370. doi:10.1001/archderm.142.3.365. PMID 16549716.
  25. ^ Mauvais-Jarvis F, Merz BN, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, et al. (22 August 2020). "Sex and gender: modifiers of health, disease, and medicine". The Lancet. 396 (10250): 565–582. doi:10.1016/S0140-6736(20)31561-0. PMC 7440877. PMID 32828189.
  26. ^ Legato, Marianne J.; Johnson, Paula A.; Manson, JoAnn E. (8 November 2016). "Consideration of Sex Differences in Medicine to Improve Health Care and Patient Outcomes". JAMA. 316 (18): 1865–1866. doi:10.1001/jama.2016.13995. PMID 27802499.
  27. ^ Miller, Leah R.; Marks, Cheryl; Becker, Jill B.; Hurn, Patricia D.; Chen, Wei-Jung; Woodruff, Teresa; McCarthy, Margaret M.; Sohrabji, Farida; Schiebinger, Londa; Wetherington, Cora Lee; Makris, Susan; Arnold, Arthur P.; Einstein, Gillian; Miller, Virginia M.; Sandberg, Kathryn; Maier, Susan; Cornelison, Terri L.; Clayton, Janine A. (January 2017). "Considering sex as a biological variable in preclinical research". The FASEB Journal. 31 (1): 29–34. doi:10.1096/fj.201600781r. PMC 6191005. PMID 27682203.
  28. ^ Maeng, Lisa Y.; Milad, Mohammed R. (1 November 2015). "Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones". Hormones and Behavior. 76: 106–117. doi:10.1016/j.yhbeh.2015.04.002. ISSN 0018-506X. PMC 4823998. PMID 25888456.
  29. ^ a b c Migeon BR (2014). Females are mosaics : X inactivation and sex differences in disease (Second ed.). Oxford: Oxford University Press. ISBN 978-0-19-992753-1.
  30. ^ a b Migeon BR (June 2007). "Why females are mosaics, X-chromosome inactivation, and sex differences in disease". Gender Medicine. 4 (2): 97–105. doi:10.1016/S1550-8579(07)80024-6. PMID 17707844.
  31. ^ a b Brown C (September 2007). "Patchwork women". Nature Genetics. 39 (9): 1043. doi:10.1038/ng0907-1043. S2CID 32145544.
  32. ^ Zimmermann KA (22 March 2018). "Reproductive System: Facts, Functions & Diseases". Live Science. Retrieved 11 November 2021.
  33. ^ "Male Breast Cancer Treatment". National Cancer Institute. 2014. Archived from the original on 4 July 2014. Retrieved 29 June 2014.
  34. ^ Reid BM, Permuth JB, Sellers TA (February 2017). "Epidemiology of ovarian cancer: a review". Cancer Biology & Medicine. 14 (1): 9–32. doi:10.20892/j.issn.2095-3941.2016.0084. PMC 5365187. PMID 28443200.
  35. ^ a b Ursin RL, Klein SL (September 2021). "Sex Differences in Respiratory Viral Pathogenesis and Treatments". Annual Review of Virology. 8 (1): 393–414. doi:10.1146/annurev-virology-091919-092720. PMID 34081540. S2CID 235333732.
  36. ^ Klein SL, Flanagan KL (October 2016). "Sex differences in immune responses". Nature Reviews. Immunology. 16 (10): 626–638. doi:10.1038/nri.2016.90. PMID 27546235. S2CID 2258164.
  37. ^ Alswat KA (May 2017). "Gender Disparities in Osteoporosis". Journal of Clinical Medicine Research. 9 (5): 382–387. doi:10.14740/jocmr2970w. PMC 5380170. PMID 28392857.
  38. ^ Franceschini, Anna; Fattore, Liana (5 April 2021). "Gender-specific approach in psychiatric diseases: Because sex matters". European Journal of Pharmacology. 896: 173895. doi:10.1016/j.ejphar.2021.173895. ISSN 0014-2999. PMID 33508283. S2CID 231753879. Retrieved 23 December 2021.
  39. ^ Sweeting H, Walker L, MacLean A, Patterson C, Räisänen U, Hunt K (2015). "Prevalence of eating disorders in males: a review of rates reported in academic research and UK mass media". International Journal of Men's Health. 14 (2): 10.3149/jmh.1402.86. doi:10.3149/jmh.1402.86 (inactive 31 January 2024). PMC 4538851. PMID 26290657.{{cite journal}}: CS1 maint: DOI inactive as of January 2024 (link)
  40. ^ Stice E, Marti CN, Rohde P (May 2013). "Prevalence, incidence, impairment, and course of the proposed DSM-5 eating disorder diagnoses in an 8-year prospective community study of young women". Journal of Abnormal Psychology. 122 (2): 445–457. doi:10.1037/a0030679. PMC 3980846. PMID 23148784.
  41. ^ Gagne DA, Von Holle A, Brownley KA, Runfola CD, Hofmeier S, Branch KE, Bulik CM (November 2012). "Eating disorder symptoms and weight and shape concerns in a large web-based convenience sample of women ages 50 and above: results of the Gender and Body Image (GABI) study". The International Journal of Eating Disorders. 45 (7): 832–844. doi:10.1002/eat.22030. PMC 3459309. PMID 22729743.
  42. ^ Schaumberg K, Welch E, Breithaupt L, Hübel C, Baker JH, Munn-Chernoff MA, et al. (November 2017). "The Science Behind the Academy for Eating Disorders' Nine Truths About Eating Disorders". European Eating Disorders Review. 25 (6): 432–450. doi:10.1002/erv.2553. PMC 5711426. PMID 28967161.
  43. ^ American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (Fifth ed.). Arlington, VA: American Psychiatric Publishing. pp. 338–349. ISBN 978-0-89042-555-8.
  44. ^ Hanamsagar, Richa; Bilbo, Staci D. (June 2016). "Sex differences in neurodevelopmental and neurodegenerative disorders: Focus on microglial function and neuroinflammation during development". The Journal of Steroid Biochemistry and Molecular Biology. 160: 127–133. doi:10.1016/j.jsbmb.2015.09.039. PMC 4829467. PMID 26435451.
  45. ^ a b c d Ullah, Mohammad Fahad; Ahmad, Aamir; Bhat, Showket Hussain; Abu-Duhier, Faisel M.; Barreto, George E.; Ashraf, Ghulam Md (1 July 2019). "Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders". Neuroscience & Biobehavioral Reviews. 102: 95–105. doi:10.1016/j.neubiorev.2019.04.003. ISSN 0149-7634. PMID 30959072. S2CID 102487049. Retrieved 28 December 2021.
  46. ^ Zielonka D, Stawinska-Witoszynska B (2020). "Gender Differences in Non-sex Linked Disorders: Insights From Huntington's Disease". Frontiers in Neurology. 11: 571. doi:10.3389/fneur.2020.00571. PMC 7358529. PMID 32733356.
  47. ^ Fracas E, Costantino A, Vecchi M, Buoli M. Depressive and Anxiety Disorders in Patients with Inflammatory Bowel Diseases: Are There Any Gender Differences? Int J Environ Res Public Health. 2023 Jun 29;20(13):6255. doi: 10.3390/ijerph20136255. PMID 37444101; PMCID: PMC10340762.
  48. ^ American Psychiatric Association (2013), Diagnostic and Statistical Manual of Mental Disorders (5th ed.), Arlington: American Psychiatric Publishing, pp. 160–68, ISBN 978-0-89042-555-8, retrieved 22 July 2016
  49. ^ Schmitt A, Malchow B, Hasan A, Falkai P (February 2014). "The impact of environmental factors in severe psychiatric disorders". Frontiers in Neuroscience. 8 (19): 19. doi:10.3389/fnins.2014.00019. PMC 3920481. PMID 24574956.
  50. ^ Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed.). Washington [etc.]: American Psychiatric Publishing. 2013. pp. 645, 663–6. ISBN 978-0-89042-555-8.
  51. ^ "Definition & Facts for Irritable Bowel Syndrome | NIDDK". National Institute of Diabetes and Digestive and Kidney Diseases. Retrieved 2019-07-04.
  52. ^ Clauw DJ (April 2014). "Fibromyalgia: a clinical review". JAMA. 311 (15): 1547–1555. doi:10.1001/jama.2014.3266. PMID 24737367.
  53. ^ Mallampalli MP, Carter CL (July 2014). "Exploring sex and gender differences in sleep health: a Society for Women's Health Research Report". Journal of Women's Health. 23 (7): 553–562. doi:10.1089/jwh.2014.4816. PMC 4089020. PMID 24956068.
  54. ^ "Chronic fatigue syndrome". womenshealth.gov. 21 February 2017. Retrieved 13 May 2019.
  55. ^ Benarroch EE (December 2012). "Postural tachycardia syndrome: a heterogeneous and multifactorial disorder". Mayo Clinic Proceedings. 87 (12): 1214–1225. doi:10.1016/j.mayocp.2012.08.013. PMC 3547546. PMID 23122672.
  56. ^ Dworetzky, Barbara A.; Baslet, Gaston (December 2017). "Psychogenic Nonepileptic Seizures in Women". Seminars in Neurology. 37 (6): 624–631. doi:10.1055/s-0037-1607971. ISSN 1098-9021. PMID 29270935. S2CID 11959147.
  57. ^ Türe, H. Sabiha; Tatlidil, Işıl; Kiliçarslan, Esin; Akhan, Galip (September 2019). "Gender-Related Differences in Semiology of Psychogenic Non-Epileptic Seizures". Archives of Neuropsychiatry. 56 (3): 178–181. doi:10.29399/npa.23420. PMC 6732800. PMID 31523142.
  58. ^ Asadi-Pooya, Ali A.; Homayoun, Maryam (1 February 2020). "Psychogenic nonepileptic seizures: The sex ratio trajectory across the lifespan". Seizure. 75: 63–65. doi:10.1016/j.seizure.2019.12.017. ISSN 1059-1311. PMID 31874361. S2CID 209413248.
  59. ^ a b Romeo DM, Sini F, Brogna C, Albamonte E, Ricci D, Mercuri E (August 2016). "Sex differences in cerebral palsy on neuromotor outcome: a critical review". Developmental Medicine and Child Neurology. 58 (8): 809–813. doi:10.1111/dmcn.13137. PMID 27098195.
  60. ^ Kruszka, Paul; Silberbach, Michael (March 2019). "The state of Turner syndrome science: Are we on the threshold of discovery?". American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 181 (1): 4–6. doi:10.1002/ajmg.c.31688. PMID 30790455. S2CID 73499005. [Turner Syndrome] is one of the most common genetic syndromes that occurs only in females...
  61. ^ "Prostate vs. testicular cancer: Similarities and differences". Medical News Today. 25 October 2021. Retrieved 10 November 2021.
  62. ^ "U.S. National Library of Medicine". Archived from the original on 12 October 2007. Retrieved 2 December 2007.
  63. ^ Doblhammer D, Gumà J (February 12, 2018). A Demographic Perspective on Gender, Family and Health in Europe. Springer. p. 78. ISBN 978-1-01-326907-3. Retrieved 11 November 2021.
  64. ^ Latimer, Caitlin S.; Keene, C. Dirk; Flanagan, Margaret E.; Hemmy, Laura S.; Lim, Kelvin O.; White, Lon R.; Montine, Kathleen S.; Montine, Thomas J. (1 June 2017). "Resistance to Alzheimer Disease Neuropathologic Changes and Apparent Cognitive Resilience in the Nun and Honolulu-Asia Aging Studies". Journal of Neuropathology and Experimental Neurology. 76 (6): 458–466. doi:10.1093/jnen/nlx030. ISSN 1554-6578. PMC 6334750. PMID 28499012.
  65. ^ "Men to get aneurysm screening". BBC. 5 January 2008. Retrieved 6 June 2016.
  66. ^ Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, et al. (2007). "The epidemiology of autism spectrum disorders". Annual Review of Public Health. 28: 235–258. doi:10.1146/annurev.publhealth.28.021406.144007. PMID 17367287.
  67. ^ Werling, Donna M.; Geschwind, Daniel H. (April 2013). "Sex differences in autism spectrum disorders". Current Opinion in Neurology. 26 (2): 146–153. doi:10.1097/WCO.0b013e32835ee548. PMC 4164392. PMID 23406909.
  68. ^ Picchioni MM, Murray RM (July 2007). "Schizophrenia". BMJ. 335 (7610): 91–95. doi:10.1136/bmj.39227.616447.BE. PMC 1914490. PMID 17626963.
  69. ^ Alegria AA, Blanco C, Petry NM, Skodol AE, Liu SM, Grant B, Hasin D (July 2013). "Sex differences in antisocial personality disorder: results from the National Epidemiological Survey on Alcohol and Related Conditions". Personality Disorders. 4 (3): 214–222. doi:10.1037/a0031681. PMC 3767421. PMID 23544428.
  70. ^ Galanter M, Kleber HD, Brady KT (17 December 2014). Galanter M, Kleber HD, Brady KT (eds.). The American Psychiatric Publishing Textbook of Substance Abuse Treatment. doi:10.1176/appi.books.9781615370030. ISBN 978-1-58562-472-0.
  71. ^ World Cancer Report 2014. World Health Organization. 2014. pp. Chapter 5.4. ISBN 978-9283204299.
  72. ^ Montgomery EA (2014). "Oesophageal Cancer". In Stewart BW, Wild CP (eds.). World Cancer Report 2014. World Health Organization. pp. 528–543. ISBN 978-9283204299.
  73. ^ Hefaiedh R, Ennaifer R, Romdhane H, Ben Nejma H, Arfa N, Belhadj N, et al. (Aug–Sep 2013). "Gender difference in patients with hepatocellular carcinoma". La Tunisie Médicale. 91 (8–9): 505–508. PMID 24227507.
  74. ^ Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Curado MP, Ferlay J, Franceschi S, et al. (December 2013). "Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers". Journal of Clinical Oncology. 31 (36): 4550–4559. doi:10.1200/jco.2013.50.3870. PMC 3865341. PMID 24248688.
  75. ^ Hertz D, Schneider B (March 2019). "Sex differences in tuberculosis". Seminars in Immunopathology. 41 (2): 225–237. doi:10.1007/s00281-018-0725-6. PMID 30361803. S2CID 53030554.
  76. ^ O'Driscoll DN, McGovern M, Greene CM, Molloy EJ (May 2018). "Gender disparities in preterm neonatal outcomes". Acta Paediatrica. 107 (9): 1494–1499. doi:10.1111/apa.14390. PMID 29750838. S2CID 21676905.
  77. ^ Gorrell, Sasha; Murray, Stuart B. (October 2019). "Eating Disorders in Males". Child and Adolescent Psychiatric Clinics of North America. 28 (4): 641–651. doi:10.1016/j.chc.2019.05.012. ISSN 1558-0490. PMC 6785984. PMID 31443881.
  78. ^ Strother, Eric; Lemberg, Raymond; Stanford, Stevie Chariese; Turberville, Dayton (October 2012). "Eating Disorders in Men: Underdiagnosed, Undertreated, and Misunderstood". Eating Disorders. 20 (5): 346–355. doi:10.1080/10640266.2012.715512. ISSN 1064-0266. PMC 3479631. PMID 22985232.
  79. ^ Nagata, Jason M.; Ganson, Kyle T.; Murray, Stuart B. (August 2020). "Eating disorders in adolescent boys and young men: an update". Current Opinion in Pediatrics. 32 (4): 476–481. doi:10.1097/MOP.0000000000000911. PMC 7867380. PMID 32520822.
  80. ^ Stormont, Gavin D.; Deibert, Christopher M. (March 2021). "Genetic causes and management of male infertility". Translational Andrology and Urology. 10 (3): 1365–1372. doi:10.21037/tau.2020.03.34. PMC 8039619. PMID 33850772.
  81. ^ Shah, K; Sivapalan, G; Gibbons, N; Tempest, H; Griffin, Dk (1 July 2003). "The genetic basis of infertility". Reproduction. 126 (1): 13–25. doi:10.1530/rep.0.1260013. PMID 12814343. Klinefelter syndrome and the subsequent infertility phenotype caused by it are specific to males.
  82. ^ NCD Risk Factor Collaboration. "Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants". Lancet. Retrieved 15 June 2024.
  83. ^ Izumi, Yoichi; Matsumoto, Koichi; Ozawa, Yukio; Kasamaki, Yuji; Shinndo, Atsusi; Ohta, Masakatsu; Jumabay, Madet; Nakayama, Tomohiro; Yokoyama, Eise; Shimabukuro, Hiroaki; Kawamura, Hiroshi; Cheng, Zuheng; Ma, Yitong; Mahmut, Masum (1 October 2007). "Effect of Age at Menopause on Blood Pressure in Postmenopausal Women". American Journal of Hypertension. pp. 1045–1050. doi:10.1016/j.amjhyper.2007.04.019. Retrieved 15 June 2024.
  84. ^ Reckelhoff, Jane F. (August 2023). "Mechanisms of sex and gender differences in hypertension". Journal of Human Hypertension. pp. 596–601. doi:10.1038/s41371-023-00810-4. Retrieved 15 June 2024.
  85. ^ Miller, Amanda J.; Arnold, Amy C. (1 April 2022). "The renin-angiotensin system and cardiovascular autonomic control in aging". Peptides. p. 170733. doi:10.1016/j.peptides.2021.170733.
  86. ^ Reckelhoff, Jane F. (August 2023). "Mechanisms of sex and gender differences in hypertension". Journal of Human Hypertension. pp. 596–601. doi:10.1038/s41371-023-00810-4.
  87. ^ Reckelhoff, Jane F.; Zhang, Huimin; Srivastava, Kumud (January 2000). "Gender Differences in Development of Hypertension in Spontaneously Hypertensive Rats: Role of the Renin-Angiotensin System". Hypertension. pp. 480–483. doi:10.1161/01.HYP.35.1.480.
  88. ^ Miller, Amanda J.; Arnold, Amy C. (1 April 2022). "The renin-angiotensin system and cardiovascular autonomic control in aging". Peptides. p. 170733. doi:10.1016/j.peptides.2021.170733.
  89. ^ Miller, Amanda J.; Arnold, Amy C. (1 April 2022). "The renin-angiotensin system and cardiovascular autonomic control in aging". Peptides. p. 170733. doi:10.1016/j.peptides.2021.170733.

Leave a Reply