Cannabis

PKS 1402+044
PKS 1402+044 captured by DESI Legacy Surveys
Observation data (J2000.0 epoch)
ConstellationVirgo
Right ascension14h 05m 01.12s
Declination+04d 15m 35.82s
Redshift3.207977
Heliocentric radial velocity961,727 km/s
Distance11.323 Gly (light travel time distance)
Apparent magnitude (V)0.074
Apparent magnitude (B)0.098
Surface brightness19.6
Characteristics
TypeFSRQ; BAL, BLLAC
Other designations
NVSS J140501+041536, FIRST J140501.1+041535, PGC 2827828, TXS 1402+044, IRCF J140501.1+041535, ZS 1402+043, MRC 1402+044, PMN J1405+0415, SDSS J140501.12+041535.7

PKS 1402+044 is a quasar located in the constellation of Virgo. It has a redshift of 3.207, estimating the object to be located 11.3 billion light-years away from Earth.[1][2]

Characteristics[edit]

PKS 1402+044 is classified a broad absorption-line quasar (BAL QSO) observed by Sloan Digital Sky Survey[3] with a flat-spectrum radio source.[4][5] It is also classified a blazar, a type of active galaxy[6][7] and such produces a powerful astrophysical jet that is shot out into the depths of intergalactic space.[8] Observations made by the European VLBI network, finds the jet is weakly distorted and considered most distant in the universe's history.[9]

The blazar is known to be in its quiescent state, but it shows repeated periods of outbursts that are visible throughout the electromagnetic spectrum.[10] According to observations from Gamma-Ray Blazar Survey and Fermi Gamma-Ray Space Telescope, PKS 1402+044 is found optically variable with >6σ significance,[11] γ-ray detected and more Compton dominated than high synchrotron peaked (HSP) BL Lac objects.[12]

Through radio imaging by researchers, the quasar is core-dominated with fluctuating radio emission and radio morphology found smaller in comparison of steep-spectrum quasars.[13] It is also the brightest X-ray quasar but with compact dispersion of <logL χ1>=46.15±0.25 at high redshift.[14] The quasar is radio-loud with straightened jet magnetic fields along its source axis and a lobe field found to have a misaligned orientation.[15]

Observations of PKS 1402+044[edit]

The intrinsic C iv in BAL QSO fractions like PKS 1402+044 is calculated as 41 ± 5 per cent. The allows the researchers to study further on the quasar's luminosity and redshift. From the high redshifts between z≃ 4.0 to z≃ 2.0, factor of 3.5 ± 0.4 of the intrinsic fraction does declines but no luminosity reliance. However the rate of change of the intrinsic fraction has 3σ limits with a luminosity value of -6.9 and 7.0 percent dex−1.[16] Moreover, the quasar has a stronger narrow C IV λ1549 absorption line, than EWrest>=0.5 Å.[17]

PKS 1402+044 has a weak emission-line. Researchers who studied the quasar, found it reveals a sign of hot thermal dust emission (T ~ 1000 K) containing a rest-frame of 0.1-5 μm spectral energy distribution, alike to normal quasars. Apart from that, polarization, variability, and radio properties are quite different from BL Lac objects, thus eliminating the possibilities of continuum boosting by the quasar's relativistic jet.[18]

Researchers who investigated the frequency-dependent radio properties of the jet in PKS 1402+044, found the quasar of "core-jet" morphology. The core-jet features extends out to kilo-parsec scales, with perpendicular spectral index and shallow brightness temperature. As the core is further away, the distance of the jet increases. This suggests the jet is collimated by the magnetic field, with mass of the central object estimated to be ~109 ~ M_⊙, which the upper limit of the jet proper motion of PKS 1402+044 is 0.03 mas yr−1 (~3c) when placed at east–west direction.[19]

Host galaxy[edit]

The host galaxy of PKS 1402+044 is a large disk galaxy.[20][21] It is an active galaxy containing an ionizing photons per second rate of Q_H I ∼ 1056 and a monochromatic λ = 912 Å luminosity of LUV ∼ 1023 W Hz−1.[22] Moreover, the host galaxy has an extremely bright radio core[23] with a galactic halo surrounding the regions with a dense parameter of interstellar gas.[24] According to researcher investigating on limits from detectable continuum flux from PKS 1402+044, a gas cloud is associated with the galaxy.[25]

Dampen Lyα System[edit]

The dampen Lyα System[26] within the region of PKS 1402+044 is metal rich containing values of [logN(Zn+)>=13.15 or logN(Si+)>=15.95]. The system shows strong signatures of Zn II λ2026 and Si II λ1808 lines, indicating it is due to Type II supernovae.[27] Moreover, 90% of hydrogen mass is embedded inside the dampen Lyα system with values of N(HI) >1.6 × 1017 atom cm−2. The column density of the dampened Lyα System is calculated to 1.6 × 1021 atom cm-2 at z < 3.5.[28] As for hydrogen ion ionization rate in PKS 1402+044 is evaluated to be 1.9+1.2-1.0×10−12 s−1.[29][30]

Moreover, the Lyman-alpha forest lines in PKS 1402+044 are powerful and broad, when compared with similar lines that is further from quasars. These are larger and have no mutual relationship with the luminosity of the quasar, its radio loudness or optical spectral index. These signs shows there are more lines at high redshifts but have weak connections caused by presence of associated metal line systems.[31] The covering factor for absorbing clouds inside the extended emission-line region of PKS 1402+044 is either minor or identical to 0.15 when noticed by spectroscopic observation in which researchers seek for Lyman-limit regions of 32 quasars.[32]

Green Bank Telescope (GBT) and Berkeley-Illinois-Maryland Association (BIMA) array observed PKS 1402+044 and discovered the redshifted millimetre absorptions had increased and reached 3σ limits of τ<= 0.1. This is a significant improvement, which the researchers provided restrictions for millimetre absorptions beneath the atmospheric cut-off for the Lyman and Werner H2 bands in ultraviolet measurements of (zabs<~ 1.8).[33]

Black hole[edit]

The black hole found in PKS 1402+044 has a mass of log MBH, M○ > 9 with a luminous accretion disk weighing Ldisk >1046 erg s−1. The broadband spectral energy distribution inside the black hole is influenced by high-energy radiation, indicating the jets are fast moving and the most luminous date-to-date.[34]

According to researchers who used a virial black hole mass estimator based on the Hβ, Mg II, and C IV emission lines,[35] the black hole mass is gauged to be μ 0 = 0.55 ± 0.22, ξ μR = 1.09 ± 0.10, and {ξ }μ X=-{0.59}-0.15+0.16 with natural logarithm of the Gaussian intrinsic scatter measured with a log-mass direction {ln}{ɛ }μ =-{0.04}-0.13+0.14. This suggests improvements when compared to earlier mass scaling result, given the active galactic nuclei sample size has increased from 18 to 30.[36]

References[edit]

  1. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-06-13.
  2. ^ Peterson, B. A.; Jauncey, D. L.; Wright, A. E.; Condon, J. J. (1978-06-01). "PKS 1402+44: a red object with a redshift of 3.20". The Astrophysical Journal. 222: L81–L83. Bibcode:1978ApJ...222L..81P. doi:10.1086/182697. ISSN 0004-637X.
  3. ^ Gibson, Robert R.; Jiang, Linhua; Brandt, W. N.; Hall, Patrick B.; Shen, Yue; Wu, Jianfeng; Anderson, Scott F.; Schneider, Donald P.; Vanden Berk, Daniel; Gallagher, S. C.; Fan, Xiaohui; York, Donald G. (2009-02-01). "A Catalog of Broad Absorption Line Quasars in Sloan Digital Sky Survey Data Release 5". The Astrophysical Journal. 692 (1): 758–777. arXiv:0810.2747. Bibcode:2009ApJ...692..758G. doi:10.1088/0004-637X/692/1/758. ISSN 0004-637X.
  4. ^ Healey, Stephen E.; Romani, Roger W.; Taylor, Gregory B.; Sadler, Elaine M.; Ricci, Roberto; Murphy, Tara; Ulvestad, James S.; Winn, Joshua N. (2007-07-01). "CRATES: An All-Sky Survey of Flat-Spectrum Radio Sources". The Astrophysical Journal Supplement Series. 171 (1): 61–71. arXiv:astro-ph/0702346. Bibcode:2007ApJS..171...61H. doi:10.1086/513742. ISSN 0067-0049.
  5. ^ Siebert, J.; Brinkmann, W.; Drinkwater, M. J.; Yuan, W.; Francis, P. J.; Peterson, B. A.; Webster, R. L. (1998-11-01). "X-ray properties of the Parkes sample of flat-spectrum radio sources: dust in radio-loud quasars?". Monthly Notices of the Royal Astronomical Society. 301 (1): 261–279. arXiv:astro-ph/9808065. Bibcode:1998MNRAS.301..261S. doi:10.1046/j.1365-8711.1998.02019.x. ISSN 0035-8711.
  6. ^ Massaro, E.; Giommi, P.; Leto, C.; Marchegiani, P.; Maselli, A.; Perri, M.; Piranomonte, S.; Sclavi, S. (2009-02-01). "Roma-BZCAT: a multifrequency catalogue of blazars". Astronomy and Astrophysics. 495 (2): 691–696. arXiv:0810.2206. Bibcode:2009A&A...495..691M. doi:10.1051/0004-6361:200810161. ISSN 0004-6361.
  7. ^ Paliya, Vaidehi S.; Marcotulli, L.; Ajello, M.; Joshi, M.; Sahayanathan, S.; Rao, A. R.; Hartmann, D. (2017-12-01). "General Physical Properties of CGRaBS Blazars". The Astrophysical Journal. 851 (1): 33. arXiv:1711.01292. Bibcode:2017ApJ...851...33P. doi:10.3847/1538-4357/aa98e1. ISSN 0004-637X.
  8. ^ Liu, F. K.; Zhang, Y. H. (2002-01-01). "A new list of extra-galactic radio jets". Astronomy and Astrophysics. 381 (3): 757–760. arXiv:astro-ph/0212477. Bibcode:2002A&A...381..757L. doi:10.1051/0004-6361:20011572. ISSN 0004-6361.
  9. ^ Gurvits, L. I.; Kardashev, N. S.; Popov, M. V.; Schilizzi, R. T.; Barthel, P. D.; Pauliny-Toth, I. I. K.; Kellermann, K. I. (1992-07-01). "The compact radio structure of the high redshift quasars 0642+449, 1402+044, 1614+051". Astronomy and Astrophysics. 260: 82–88. Bibcode:1992A&A...260...82G. ISSN 0004-6361.
  10. ^ Liodakis, I.; Pavlidou, V.; Hovatta, T.; Max-Moerbeck, W.; Pearson, T. J.; Richards, J. L.; Readhead, A. C. S. (2017-06-01). "Bimodal radio variability in OVRO-40 m-monitored blazars". Monthly Notices of the Royal Astronomical Society. 467 (4): 4565–4576. arXiv:1702.05493. Bibcode:2017MNRAS.467.4565L. doi:10.1093/mnras/stx432. ISSN 0035-8711.
  11. ^ Richards, J. L.; Hovatta, T.; Max-Moerbeck, W.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S. (2014-03-01). "Connecting radio variability to the characteristics of gamma-ray blazars". Monthly Notices of the Royal Astronomical Society. 438 (4): 3058–3069. arXiv:1312.3634. Bibcode:2014MNRAS.438.3058R. doi:10.1093/mnras/stt2412. ISSN 0035-8711.
  12. ^ Hovatta, T.; Pavlidou, V.; King, O. G.; Mahabal, A.; Sesar, B.; Dancikova, R.; Djorgovski, S. G.; Drake, A.; Laher, R.; Levitan, D.; Max-Moerbeck, W.; Ofek, E. O.; Pearson, T. J.; Prince, T. A.; Readhead, A. C. S. (2014-03-01). "Connection between optical and γ-ray variability in blazars". Monthly Notices of the Royal Astronomical Society. 439 (1): 690–702. arXiv:1401.0538. Bibcode:2014MNRAS.439..690H. doi:10.1093/mnras/stt2494. ISSN 0035-8711.
  13. ^ Barthel, Peter D.; Vestergaard, Marianne; Lonsdale, Colin J. (2000-02-01). "Radio imaging of core-dominated high redshift quasars". Astronomy and Astrophysics. 354: 7–16. arXiv:astro-ph/9911474. Bibcode:2000A&A...354....7B. ISSN 0004-6361.
  14. ^ Sapre, A. K.; Mishra, V. D. (1985-10-01). "Redshifts of the brightest X-ray QSO's". Astrophysics and Space Science. 115 (1): 107–118. Bibcode:1985Ap&SS.115..107S. doi:10.1007/BF00653831. ISSN 0004-640X.
  15. ^ Feigelson, E. D.; Isobe, T.; Kembhavi, A. (1984-10-01). "Radio and X-ray emission in radio-selected quasars". The Astronomical Journal. 89: 1464–1477. Bibcode:1984AJ.....89.1464F. doi:10.1086/113648. ISSN 0004-6256.
  16. ^ Allen, James T.; Hewett, Paul C.; Maddox, Natasha; Richards, Gordon T.; Belokurov, Vasily (2011-01-01). "A strong redshift dependence of the broad absorption line quasar fraction". Monthly Notices of the Royal Astronomical Society. 410 (2): 860–884. arXiv:1007.3991. Bibcode:2011MNRAS.410..860A. doi:10.1111/j.1365-2966.2010.17489.x. ISSN 0035-8711.
  17. ^ Vestergaard, M. (2003-12-01). "Occurrence and Global Properties of Narrow C IV λ1549 Å Absorption Lines in Moderate-Redshift Quasars". The Astrophysical Journal. 599 (1): 116–139. arXiv:astro-ph/0309550. Bibcode:2003ApJ...599..116V. doi:10.1086/379159. ISSN 0004-637X.
  18. ^ Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Brandt, W. N.; Shemmer, Ohad; Strauss, Michael A.; Anderson, Scott F.; Carilli, Christopher L.; Gibson, Robert R.; Jiang, Linhua; Kim, J. Serena; Richards, Gordon T.; Schmidt, Gary D.; Schneider, Donald P.; Shen, Yue; Smith, Paul S. (2009-07-01). "High-redshift SDSS Quasars with Weak Emission Lines". The Astrophysical Journal. 699 (1): 782–799. arXiv:0904.2181. Bibcode:2009ApJ...699..782D. doi:10.1088/0004-637X/699/1/782. ISSN 0004-637X.
  19. ^ Yang, J.; Gurvits, L. I.; Lobanov, A. P.; Frey, S.; Hong, X. -Y. (2008-10-01). "Multi-frequency investigation of the parsec- and kilo-parsec-scale radio structures in high-redshift quasar PKS ;1402+044". Astronomy and Astrophysics. 489 (2): 517–524. arXiv:0810.0077. Bibcode:2008A&A...489..517Y. doi:10.1051/0004-6361:200809846. ISSN 0004-6361.
  20. ^ Valentini, Milena; Gallerani, Simona; Ferrara, Andrea (2021-07-22). "Host galaxies of high-redshift quasars: SMBH growth and feedback". Monthly Notices of the Royal Astronomical Society. 507 (1): 1–26. arXiv:2107.05638. doi:10.1093/mnras/stab1992. ISSN 0035-8711.
  21. ^ Lupi, Alessandro; Volonteri, Marta; Decarli, Roberto; Bovino, Stefano; Silk, Joseph; Bergeron, Jacqueline (2019-09-01). "High-redshift quasars and their host galaxies - I. Kinematical and dynamical properties and their tracers". Monthly Notices of the Royal Astronomical Society. 488 (3): 4004–4022. arXiv:1901.02464. Bibcode:2019MNRAS.488.4004L. doi:10.1093/mnras/stz1959. ISSN 0035-8711.
  22. ^ Curran, S. J.; Hunstead, R. W.; Johnston, H. M.; Whiting, M. T.; Sadler, E. M.; Allison, J. R.; Bignell, C. (2017-10-01). "Further observational evidence for a critical ionizing luminosity in active galaxies". Monthly Notices of the Royal Astronomical Society. 470 (4): 4600–4607. arXiv:1706.06508. Bibcode:2017MNRAS.470.4600C. doi:10.1093/mnras/stx1572. ISSN 0035-8711.
  23. ^ Punsly, Brian (1995-04-01). "The Extended Morphology of Ultraluminous Radio Cores". The Astronomical Journal. 109: 1555. Bibcode:1995AJ....109.1555P. doi:10.1086/117385. ISSN 0004-6256.
  24. ^ Sholomitskij, G. B.; Yaskovitch, A. L. (1990-10-01). "The cosmological halos as a new test for the intergalactic gas". Pisma V Astronomicheskii Zhurnal. 16: 893. Bibcode:1990PAZh...16..893S. ISSN 0320-0108.
  25. ^ Hu, Esther M.; Cowie, Lennox L. (1987-06-01). "The Distribution of Gas and Galaxies around the Distant Quasar PKS 1614+051". The Astrophysical Journal. 317: L7. Bibcode:1987ApJ...317L...7H. doi:10.1086/184902. ISSN 0004-637X.
  26. ^ Curran, S. J.; Webb, J. K.; Murphy, M. T.; Bandiera, R.; Corbelli, E.; Flambaum, V. V. (2002-01-01). "A Catalogue of Damped Lyman Alpha Absorption Systems and Radio Flux Densities of the Background Quasars". Publications of the Astronomical Society of Australia. 19 (4): 455–474. arXiv:astro-ph/0206091. Bibcode:2002PASA...19..455C. doi:10.1071/AS01077. ISSN 1323-3580.
  27. ^ Herbert-Fort, Stéphane; Prochaska, Jason X.; Dessauges-Zavadsky, Miroslava; Ellison, Sara L.; Howk, J. Chris; Wolfe, Arthur M.; Prochter, Gabriel E. (2006-08-01). "The Metal-strong Damped Lyα Systems". Publications of the Astronomical Society of the Pacific. 118 (846): 1077–1097. arXiv:astro-ph/0607430. Bibcode:2006PASP..118.1077H. doi:10.1086/507653. ISSN 0004-6280.
  28. ^ Péroux, C.; McMahon, R. G.; Storrie-Lombardi, L. J.; Irwin, M. J. (2003-12-01). "The evolution of ΩHI and the epoch of formation of damped Lyman α absorbers". Monthly Notices of the Royal Astronomical Society. 346 (4): 1103–1115. arXiv:astro-ph/0107045. Bibcode:2003MNRAS.346.1103P. doi:10.1111/j.1365-2966.2003.07129.x. ISSN 0035-8711.
  29. ^ Scott, Jennifer; Bechtold, Jill; Dobrzycki, Adam; Kulkarni, Varsha P. (2000-09-01). "A Uniform Analysis of the Lyα Forest at z=0-5. II. Measuring the Mean Intensity of the Extragalactic Ionizing Background Using the Proximity Effect". The Astrophysical Journal Supplement Series. 130 (1): 67–89. arXiv:astro-ph/0004155. Bibcode:2000ApJS..130...67S. doi:10.1086/317340. ISSN 0067-0049.
  30. ^ Swarup, G.; Sarkar, A. (2002-12-01). "Observations of associated HI absorption in radio galaxies and quasars using GMRT". Bulletin of the Astronomical Society of India. 30: 743–746. Bibcode:2002BASI...30..743S. ISSN 0304-9523.
  31. ^ Srianand, R.; Khare, Pushpa (1996-06-01). "Analysis of Lyalpha absorption lines in the vicinity of QSOs". Monthly Notices of the Royal Astronomical Society. 280 (3): 767–780. arXiv:astro-ph/9511048. Bibcode:1996MNRAS.280..767S. doi:10.1093/mnras/280.3.767. ISSN 0035-8711.
  32. ^ Smith, M. G.; Carswell, R. F.; Whelan, J. A. J.; Wilkes, B. J.; Boksenberg, A.; Clowes, R. G.; Savage, A.; Cannon, R. D.; Wall, J. V. (1981-05-01). "Observations of the Lyman limit in 19 QSOs". Monthly Notices of the Royal Astronomical Society. 195 (3): 437–449. Bibcode:1981MNRAS.195..437S. doi:10.1093/mnras/195.3.437. ISSN 0035-8711.
  33. ^ Curran, S. J.; Murphy, M. T.; Pihlström, Y. M.; Webb, J. K.; Bolatto, A. D.; Bower, G. C. (2004-08-01). "Molecular fraction limits in damped Lyman α absorption systems". Monthly Notices of the Royal Astronomical Society. 352 (2): 563–570. arXiv:astro-ph/0404516. Bibcode:2004MNRAS.352..563C. doi:10.1111/j.1365-2966.2004.07945.x. ISSN 0035-8711.
  34. ^ Paliya, Vaidehi S.; Ajello, M.; Cao, H. -M.; Giroletti, M.; Kaur, Amanpreet; Madejski, Greg; Lott, Benoit; Hartmann, D. (2020-07-01). "Blazars at the Cosmic Dawn". The Astrophysical Journal. 897 (2): 177. arXiv:2006.01857. Bibcode:2020ApJ...897..177P. doi:10.3847/1538-4357/ab9c1a. ISSN 0004-637X.
  35. ^ Shen, Yue; Greene, Jenny E.; Strauss, Michael A.; Richards, Gordon T.; Schneider, Donald P. (2008-06-01). "Biases in Virial Black Hole Masses: An SDSS Perspective". The Astrophysical Journal. 680 (1): 169–190. arXiv:0709.3098. Bibcode:2008ApJ...680..169S. doi:10.1086/587475. ISSN 0004-637X.
  36. ^ Gültekin, Kayhan; King, Ashley L.; Cackett, Edward M.; Nyland, Kristina; Miller, Jon M.; Di Matteo, Tiziana; Markoff, Sera; Rupen, Michael P. (2019-01-01). "The Fundamental Plane of Black Hole Accretion and Its Use as a Black Hole-Mass Estimator". The Astrophysical Journal. 871 (1): 80. arXiv:1901.02530. Bibcode:2019ApJ...871...80G. doi:10.3847/1538-4357/aaf6b9. ISSN 0004-637X.

Leave a Reply