Cannabaceae

UGC 5101
UGC 5101 by the Hubble Space Telescope
Observation data (J2000 epoch)
ConstellationUrsa Major
Right ascension09h 35m 51.6s[1]
Declination+61° 21′ 11″[1]
Redshift0.039367 ± 0.000007 [1]
Heliocentric radial velocity11,802 ± 2 km/s[1]
Distance528 Mly (162 Mpc)[1]
Apparent magnitude (V)15.1
Characteristics
TypeS? [1]
Apparent size (V)0.83 × 0.45[1]
Notable featuresUltraluminous infrared galaxy
Other designations
MCG +10-14-025, IRAS 09320+6134, PGC 27292[1]

UGC 5101 is a galaxy merger located in the constellation Ursa Major. It is located at a distance of about 530 million light years from Earth. It is an ultraluminous infrared galaxy.[1] The total infrared luminosity of the galaxy is estimated to be 1011.95 L and the galaxy has a total star formation rate of 105 M per year.[2]

UGC 5101 has a single nucleus surrounded by spiral isophotes.[3] The nucleus of UGC 5101 has been found to be active and it has been categorised as a type 1.5 Seyfert galaxy or a LINER based on the radio continuum.[4][5] The most accepted theory for the energy source of active galactic nuclei is the presence of an accretion disk around a supermassive black hole. The mass of the black hole in the centre of UGC 5101 is estimated to be 108.2 (160 million) M based on stellar velocity dispersion.[6] The galaxy also hosts a water megamaser, probably originating from the nucleus.[7]

The nucleus emits hard X-rays, which are strongly absorbed, while there is also a soft X-rays component, which could originate from a hidden starburst region.[8] Also NeV emission has been detected in the nucleus, indicating the presence of a hot gas in the coronal line region, while hot dust has been detected around the nucleus, as indicated by the presence of PAH emission and strong silicate absorption.[9][10][11] The nucleus is surrounded by a dust torus with an opening angle larger than 41° which partly obstructs the nucleus with a column density of NHLS about 1.3×1024 cm−2. The hole of the torus is covered with compton thin material.[12] The integrated intensities of HCN to 13CO indicate the gas in the torus is very dense.[13] When observed with very-long-baseline interferometry the galaxy features a ridgeline that could be compact jets generated by the active nucleus.[14]

The galaxy has a tidal tail, seen edge on, and a faint halo of stars that was created during the merger.[15] A second tidal tail appears to loop around the nucleus, forming a ring.[3]

See also[edit]

References[edit]

  1. ^ a b c d e f g h i "NASA/IPAC Extragalactic Database". Results for UGC 5101. Retrieved 2023-05-06.
  2. ^ Esposito, Federico; Vallini, Livia; Pozzi, Francesca; Casasola, Viviana; Mingozzi, Matilde; Vignali, Cristian; Gruppioni, Carlotta; Salvestrini, Francesco (16 March 2022). "AGN impact on the molecular gas in galactic centres as probed by CO lines". Monthly Notices of the Royal Astronomical Society. 512 (1): 686–711. arXiv:2202.00697. doi:10.1093/mnras/stac313.
  3. ^ a b Scoville, N. Z.; Evans, A. S.; Thompson, R.; Rieke, M.; Hines, D. C.; Low, F. J.; Dinshaw, N.; Surace, J. A.; Armus, L. (March 2000). "NICMOS Imaging of Infrared-Luminous Galaxies". The Astronomical Journal. 119 (3): 991–1061. arXiv:astro-ph/9912246. Bibcode:2000AJ....119..991S. doi:10.1086/301248. S2CID 14039970.
  4. ^ Abrahamyan, H. V.; Mickaelian, A. M.; Paronyan, G. M.; Mikayelyan, G. A. (September 2020). "Classification by Activity Type of a Sample of Active Galaxies with Radio Emission". Astrophysics. 63 (3): 322–333. Bibcode:2020Ap.....63..322A. doi:10.1007/s10511-020-09637-0. S2CID 225182307.
  5. ^ Malkan, Matthew A.; Jensen, Lisbeth D.; Rodriguez, David R.; Spinoglio, Luigi; Rush, Brian (6 September 2017). "Emission Line Properties of Seyfert Galaxies in the 12 μ m Sample". The Astrophysical Journal. 846 (2): 102. arXiv:1708.08563. Bibcode:2017ApJ...846..102M. doi:10.3847/1538-4357/aa8302. S2CID 119243981.
  6. ^ Akylas, A.; Papadakis, I.; Georgakakis, A. (October 2022). "Black hole mass estimation using X-ray variability measurements in Seyfert galaxies". Astronomy & Astrophysics. 666: A127. arXiv:2208.12490. Bibcode:2022A&A...666A.127A. doi:10.1051/0004-6361/202244162. S2CID 251858948.
  7. ^ Zhang, J. S.; Henkel, C.; Kadler, M.; Greenhill, L. J.; Nagar, N.; Wilson, A. S.; Braatz, J. A. (May 2006). "Extragalactic H 2 O masers and X-ray absorbing column densities". Astronomy & Astrophysics. 450 (3): 933–944. arXiv:astro-ph/0512459. Bibcode:2006A&A...450..933Z. doi:10.1051/0004-6361:20054138. S2CID 18160300.
  8. ^ Imanishi, Masatoshi; Terashima, Yuichi; Anabuki, Naohisa; Nakagawa, Takao (20 October 2003). "X-Ray Evidence of a Buried Active Galactic Nucleus in UGC 5101". The Astrophysical Journal. 596 (2): L167–L170. arXiv:astro-ph/0309425. Bibcode:2003ApJ...596L.167I. doi:10.1086/379503. S2CID 14913058.
  9. ^ Armus, L.; Charmandaris, V.; Bernard-Salas, J.; Spoon, H. W. W.; Marshall, J. A.; Higdon, S. J. U.; Desai, V.; Teplitz, H. I.; Hao, L.; Devost, D.; Brandl, B. R.; Wu, Y.; Sloan, G. C.; Soifer, B. T.; Houck, J. R.; Herter, T. L. (10 February 2007). "Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope . II. The IRAS Bright Galaxy Sample". The Astrophysical Journal. 656 (1): 148–167. arXiv:astro-ph/0610218. Bibcode:2007ApJ...656..148A. doi:10.1086/510107. S2CID 25489647.
  10. ^ Martínez-Paredes, M.; Alonso-Herrero, A.; Aretxaga, I.; Ramos Almeida, C.; Hernán-Caballero, A.; González-Martín, O.; Pereira-Santaella, M.; Packham, C.; Asensio Ramos, A.; Díaz-Santos, T.; Elitzur, M.; Esquej, P.; García-Bernete, I.; Imanishi, M.; Levenson, N. A.; Rodríguez Espinosa, J. M. (21 December 2015). "A deep look at the nuclear region of UGC 5101 through high angular resolution mid-IR data with GTC/CanariCam". Monthly Notices of the Royal Astronomical Society. 454 (4): 3577–3589. arXiv:1509.04396. doi:10.1093/mnras/stv2134.
  11. ^ Armus, L.; Charmandaris, V.; Spoon, H. W. W.; Houck, J. R.; Soifer, B. T.; Brandl, B. R.; Appleton, P. N.; Teplitz, H. I.; Higdon, S. J. U.; Weedman, D. W.; Devost, D.; Morris, P. W.; Uchida, K. I.; van Cleve, J.; Barry, D. J.; Sloan, G. C.; Grillmair, C. J.; Burgdorf, M. J.; Fajardo-Acosta, S. B.; Ingalls, J. G.; Higdon, J.; Hao, L.; Bernard-Salas, J.; Herter, T.; Troeltzsch, J.; Unruh, B.; Winghart, M. (September 2004). "Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope : Early Results on Markarian 1014, Markarian 463, and UGC 5101". The Astrophysical Journal Supplement Series. 154 (1): 178–183. arXiv:astro-ph/0406179. Bibcode:2004ApJS..154..178A. doi:10.1086/422915. S2CID 43204883.
  12. ^ Oda, Saeko; Tanimoto, Atsushi; Ueda, Yoshihiro; Imanishi, Masatoshi; Terashima, Yuichi; Ricci, Claudio (30 January 2017). "Shedding Light on the Compton-thick Active Galactic Nucleus in the Ultraluminous Infrared Galaxy UGC 5101 with Broadband X-Ray Spectroscopy". The Astrophysical Journal. 835 (2): 179. arXiv:1612.07450. Bibcode:2017ApJ...835..179O. doi:10.3847/1538-4357/835/2/179. S2CID 119441643.
  13. ^ Cruz-González, I; Gómez-Ruiz, A I; Caldú-Primo, A; Benítez, E; Rodríguez-Espinosa, J M; Krongold, Y; Aretxaga, I; Snell, R; González-Martin, O; Negrete, C A; Narayanan, G; Hughes, D H; Yun, M S; Fazio, G G; Chavushyan, V; Hiriart, D; Jiménez-Bailón, E; Herrera-Endoqui, M; Martínez-Paredes, M; González, J J (17 October 2020). "Early science with the LMT: molecular torus in UGC 5101". Monthly Notices of the Royal Astronomical Society. 499 (2): 2042–2050. doi:10.1093/mnras/staa2949.
  14. ^ Lonsdale, Carol J.; Lonsdale, Colin J.; Smith, Harding E.; Diamond, Philip J. (August 2003). "VLBI Imaging of Luminous Infrared Galaxies: Active Galactic Nucleus Cores in Markarian 231, UGC 5101, and NGC 7469". The Astrophysical Journal. 592 (2): 804–818. arXiv:astro-ph/0304335. Bibcode:2003ApJ...592..804L. doi:10.1086/375778. S2CID 14352535.
  15. ^ "UGC 5101". www.spacetelescope.org. 24 April 2008. Retrieved 19 June 2023.

External links[edit]

One thought on “Cannabaceae

  1. Well, that’s interesting to know that Psilotum nudum are known as whisk ferns. Psilotum nudum is the commoner species of the two. While the P. flaccidum is a rare species and is found in the tropical islands. Both the species are usually epiphytic in habit and grow upon tree ferns. These species may also be terrestrial and grow in humus or in the crevices of the rocks.
    View the detailed Guide of Psilotum nudum: Detailed Study Of Psilotum Nudum (Whisk Fern), Classification, Anatomy, Reproduction

Leave a Reply