Cannabaceae

Otera's catalyst
Skeletal formula of Otera's catalyst
Ball-and-stick model of the Otera's catalyst molecule
Names
Other names
Octabutyltetrathiocyanatostannoxane
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/8C4H9.4CNS.2O.4Sn/c8*1-3-4-2;4*2-1-3;;;;;;/h8*1,3-4H2,2H3;;;;;;;;;;/q;;;;;;;;4*-1;;;4*+1 ☒N
    Key: BCLBTLOINGPAIT-UHFFFAOYSA-N ☒N
  • CCCC[Sn]1(N(=C=S)[Sn]2(O1[Sn]3(O2[Sn](N3=C=S)(CCCC)(CCCC)N=C=S)(CCCC)CCCC)(CCCC)CCCC)(CCCC)N=C=S
Properties
C36H72N4O2S4Sn4
Molar mass 1196.08 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Otera's catalyst, named after Japanese chemist Junzo Otera, is an organostannane compound which has been used as a transesterification catalyst. This isothioscyanate compound is a member of a family of organostannanes reported by Wada and coworkers,[1] and elaborated upon by Otera and coworkers.[2]

Preparation

[edit]

This class of compounds may be prepared generally by the reaction of an organotin halide and oxide:[3]

2 R2SnO + 2 R2SnX2 → (XR2SnOSnR2X)2

In particular, the thiocyanate compound was prepared by the reaction of dibutyltin oxide with dibutyltin diisothiocyanate.[1] Otherwise, this compound is not commercially available.

Applications

[edit]

This thiocyanate compound can be used as a transesterification catalyst.[2] Although it is not well known, it has been used in a number of total syntheses.[4][5]

In this application, the reaction occurs via the displacement of the bridging isothiocyanate ligands with the incoming alcohol to form an alcohol-bridged active catalyst. Tin acts as the Lewis acid, and gives the transesterified product.[2][3]

References

[edit]
  1. ^ a b Wada, M.; Nishino, M.; Okawara, R. (1965). "Preparation and properties of dialkyltin isothiocyanate derivatives". J. Organomet. Chem. 3: 70–75. doi:10.1016/S0022-328X(00)82737-0.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ a b c Otera, J; et al. (1991). "Novel template effects of distannoxane catalysts in highly efficient transesterification and esterification". J. Org. Chem. 56 (18): 5307–5311. doi:10.1021/jo00018a019.
  3. ^ a b Otera, Junzo. (1993). "Transesterification". Chem. Rev. 93 (4): 1449–1470. doi:10.1021/cr00020a004.
  4. ^ Trost, BM; et al. (2005). "Synthesis of Amphidinolide P". J. Am. Chem. Soc. 127 (50): 17921–17937. doi:10.1021/ja055967n. PMC 2533515. PMID 16351124.
  5. ^ Trost, BM; Stiles, DT (2007). "Total Synthesis of Spirotryprostatin B via Diastereoselective Prenylation". Org. Lett. 9 (15): 2763–6. doi:10.1021/ol070971k. PMID 17592853.

One thought on “Cannabaceae

  1. Well, that’s interesting to know that Psilotum nudum are known as whisk ferns. Psilotum nudum is the commoner species of the two. While the P. flaccidum is a rare species and is found in the tropical islands. Both the species are usually epiphytic in habit and grow upon tree ferns. These species may also be terrestrial and grow in humus or in the crevices of the rocks.
    View the detailed Guide of Psilotum nudum: Detailed Study Of Psilotum Nudum (Whisk Fern), Classification, Anatomy, Reproduction

Leave a Reply