Cannabaceae

The join-calculus is a process calculus developed at INRIA. The join-calculus was developed to provide a formal basis for the design of distributed programming languages, and therefore intentionally avoids communications constructs found in other process calculi, such as rendezvous communications, which are difficult to implement in a distributed setting.[1] Despite this limitation, the join-calculus is as expressive as the full π-calculus. Encodings of the π-calculus in the join-calculus, and vice versa, have been demonstrated.[2]

The join-calculus is a member of the π-calculus family of process calculi, and can be considered, at its core, an asynchronous π-calculus with several strong restrictions:[3]

  • Scope restriction, reception, and replicated reception are syntactically merged into a single construct, the definition;
  • Communication occurs only on defined names;
  • For every defined name there is exactly one replicated reception.

However, as a language for programming, the join-calculus offers at least one convenience over the π-calculus — namely the use of multi-way join patterns, the ability to match against messages from multiple channels simultaneously.[4]

Implementations

[edit]

Languages based on the join-calculus

[edit]

The join-calculus programming language is a new language based on the join-calculus process calculus. It is implemented as an interpreter written in OCaml, and supports statically typed distributed programming, transparent remote communication, agent-based mobility, and some failure-detection.[5]

  • Though not explicitly based on join-calculus, the rule system of CLIPS implements it if every rule deletes its inputs when triggered (retracts the relevant facts when fired).

Many implementations of the join-calculus were made as extensions of existing programming languages:

  • JoCaml is a version of OCaml extended with join-calculus primitives
  • Polyphonic C# and its successor extend C#
  • MC# and Parallel C# extend Polyphonic C#
  • Join Java extends Java
  • A Concurrent Basic proposal that uses Join-calculus
  • JErlang (the J is for Join, erjang is Erlang for the JVM)[6]

Embeddings in other programming languages

[edit]

These implementations do not change the underlying programming language but introduce join calculus operations through a custom library or DSL:

  • The ScalaJoins and the Chymyst libraries are in Scala
  • JoinHs by Einar Karttunen and syallop/Join-Language by Samuel Yallop are DSLs for Join calculus in Haskell
  • Joinads - various implementations of join calculus in F#
  • CocoaJoin is an experimental implementation in Objective-C for iOS and Mac OS X
  • The Join Python library in Python 3[7]
  • C++ via Boost[8] (for boost from 2009, ca. v. 40, current (Dec '19) is 72).

References

[edit]
  1. ^ Cedric Fournet, Georges Gonthier (1995). "The reflexive CHAM and the join-calculus". {{cite journal}}: Cite journal requires |journal= (help), pg. 1
  2. ^ Cedric Fournet, Georges Gonthier (1995). "The reflexive CHAM and the join-calculus". {{cite journal}}: Cite journal requires |journal= (help), pg. 2
  3. ^ Cedric Fournet, Georges Gonthier (1995). "The reflexive CHAM and the join-calculus". {{cite journal}}: Cite journal requires |journal= (help), pg. 19
  4. ^ Petricek, Tomas. "TryJoinads (IV.) - Concurrency using join calculus". tomasp.net. Retrieved 2023-01-24.
  5. ^ Cedric Fournet, Georges Gonthier (2000). "The Join Calculus: A Language for Distributed Mobile Programming": 268–332. {{cite journal}}: Cite journal requires |journal= (help)
  6. ^ "JErlang: Erlang with Joins". Archived from the original on 2017-12-08. Retrieved 2015-04-18.
  7. ^ Join Python, Join-calculus for Python by Mattias Andree
  8. ^ Yigong Liu - Join-Asynchronous Message Coordination and Concurrency Library
[edit]

One thought on “Cannabaceae

  1. Well, that’s interesting to know that Psilotum nudum are known as whisk ferns. Psilotum nudum is the commoner species of the two. While the P. flaccidum is a rare species and is found in the tropical islands. Both the species are usually epiphytic in habit and grow upon tree ferns. These species may also be terrestrial and grow in humus or in the crevices of the rocks.
    View the detailed Guide of Psilotum nudum: Detailed Study Of Psilotum Nudum (Whisk Fern), Classification, Anatomy, Reproduction

Leave a Reply