Cannabaceae

Isotopes of germanium (32Ge)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
68Ge synth 270.8 d ε 68Ga
70Ge 20.5% stable
71Ge synth 11.3 d ε 71Ga
72Ge 27.4% stable
73Ge 7.76% stable
74Ge 36.5% stable
76Ge 7.75% 1.78×1021 y ββ 76Se
Standard atomic weight Ar°(Ge)

Germanium (32Ge) has five naturally occurring isotopes, 70Ge, 72Ge, 73Ge, 74Ge, and 76Ge. Of these, 76Ge is very slightly radioactive, decaying by double beta decay with a half-life of 1.78 × 1021 years[4] (130 billion times the age of the universe).

Stable 74Ge is the most common isotope, having a natural abundance of approximately 36%. 76Ge is the least common with a natural abundance of approximately 7%.[5]

At least 27 radioisotopes have also been synthesized ranging in atomic mass from 58 to 89. The most stable of these is 68Ge, decaying by electron capture with a half-life of 270.95 d. It decays to the medically useful positron-emitting isotope 68Ga. (See gallium-68 generator for notes on the source of this isotope, and its medical use.) The least stable known germanium isotope is 59Ge with a half-life of 13.3 ms.

While most of germanium's radioisotopes decay by beta decay, 61Ge and 65Ge can also decay by β+-delayed proton emission.[5] 84Ge through 87Ge also have minor β-delayed neutron emission decay paths.[5]

76Ge is used in experiments on the nature of neutrinos, by searching for neutrinoless double beta decay.

List of isotopes[edit]

Nuclide
[n 1]
Z N Isotopic mass (Da)[6]
[n 2][n 3]
Half-life[1]
[n 4][n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7]
Spin and
parity[1]
[n 8][n 5]
Natural abundance (mole fraction)
Excitation energy Normal proportion[1] Range of variation
59Ge 32 27 58.98243(43)# 13.3(17) ms β+, p (93%) 58Zn 7/2−#
β+ (7%) 59Ga
2p? 57Zn
60Ge 32 28 59.97045(32)# 21(6) ms β+, p 59Zn 0+
β+, 2p? (<14%) 58Cu
61Ge 32 29 60.96373(32)# 40.7(4) ms β+, p (87%) 60Zn 3/2−#
β+ (18%) 61Ga
62Ge 32 30 61.95476(15)# 82.5(14) ms β+ 62Ga 0+
β+, p? 61Zn
63Ge 32 31 62.949628(40) 153.6(11) ms β+ 63Ga 3/2−#
β+, p? 62Zn
64Ge 32 32 63.9416899(40) 63.7(25) s β+ 64Ga 0+
65Ge 32 33 64.9393681(23) 30.9(5) s β+ (99.99%) 65Ga 3/2−
β+, p (0.011%) 64Zn
66Ge 32 34 65.9338621(26) 2.26(5) h β+ 66Ga 0+
67Ge 32 35 66.9327170(46) 18.9(3) min β+ 67Ga 1/2−
67m1Ge 18.20(5) keV 13.7(9) μs IT 67Ge 5/2−
67m2Ge 751.70(6) keV 109.1(38) ns IT 67Ge 9/2+
68Ge[n 9] 32 36 67.9280953(20) 271.05(8) d EC 68Ga 0+
69Ge 32 37 68.9279645(14) 39.05(10) h β+ 69Ga 5/2−
69m1Ge 86.76(2) keV 5.1(2) μs IT 69Ge 1/2−
69m2Ge 397.94(2) keV 2.81(5) μs IT 69Ge 9/2+
70Ge 32 38 69.92424854(88) Stable 0+ 0.2052(19)
71Ge 32 39 70.92495212(87) 11.43(3) d EC 71Ga 1/2−
71mGe 198.354(14) keV 20.41(18) ms IT 71Ge 9/2+
72Ge 32 40 71.922075824(81) Stable 0+ 0.2745(15)
72mGe 691.43(4) keV 444.2(8) ns IT 72Ge 0+
73Ge 32 41 72.923458954(61) Stable 9/2+ 0.0776(8)
73m1Ge 13.2845(15) keV 2.91(3) μs IT 73Ge 5/2+
73m2Ge 66.725(9) keV 499(11) ms IT 73Ge 1/2−
74Ge 32 42 73.921177760(13) Stable 0+ 0.3652(12)
75Ge 32 43 74.922858370(55) 82.78(4) min β 75As 1/2−
75m1Ge 139.69(3) keV 47.7(5) s IT (99.97%) 75Ge 7/2+
β (0.030%) 75As
75m2Ge 192.19(6) keV 216(5) ns IT 75Ge 5/2+
76Ge[n 10] 32 44 75 921402.725(19) (2.022±0.018±0.038)×1021 y[7] ββ 76Se 0+ 0.0775(12)
77Ge 32 45 76 923549.843(56) 11.211(3) h β 77As 7/2+
77mGe 159.71(6) keV 53.7(6) s β (81%) 77As 1/2−
IT (19%) 77Ge
78Ge 32 46 77.9228529(38) 88.0(10) min β 78As 0+
79Ge 32 47 78.925360(40) 18.98(3) s β 79As (1/2)−
79mGe 185.95(4) keV 39.0(10) s β (96%) 79As 7/2+#
IT (4%) 79Ge
80Ge 32 48 79.9253508(22) 29.5(4) s β 80As 0+
81Ge 32 49 80.9288329(22) 9(2) s β 81As 9/2+#
81mGe 679.14(4) keV 6(2) s β 81As (1/2+)
IT? (<1%) 81Ge
82Ge 32 50 81.9297740(24) 4.31(19) s β 82As 0+
83Ge 32 51 82.9345391(26) 1.85(6) s β 83As (5/2+)
β, n? 82As
84Ge 32 52 83.9375751(34) 951(9) ms β (89.4%) 84As 0+
β, n (10.6%) 83As
85Ge 32 53 84.9429697(40) 495(5) ms β (82.8%) 85As (3/2+,5/2+)#
β, n (17.2%) 84As
β, 2n? 83As
86Ge 32 54 85.94697(47) 221.6(11) ms β (55%) 86As 0+
β, n (45%) 85As
87Ge 32 55 86.95320(32)# 103(4) ms β 87As 5/2+#
β, n? 86As
β, 2n? 85As
88Ge 32 56 87.95757(43)# 61(6) ms β 88As 0+
β, n? 87As
β, 2n? 86As
89Ge 32 57 88.96453(43)# 60# ms [>300 ns] β? 89As 3/2+#
β, n? 88As
β, 2n? 87As
90Ge 32 57 89.96944(54)# 30# ms [>400 ns] β? 90As 0+
β, n? 89As
β, 2n? 88As
91Ge[8] 32 59
92Ge[8] 32 60
This table header & footer:
  1. ^ mGe – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ Used to generate 68Ga
  10. ^ Primordial radionuclide

References[edit]

  1. ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Germanium". CIAAW. 2009.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ A. M. Bakalyarov; A. Ya. Balysh; S. T. Belyaev; V. I. Lebedev; S. V. Zhukov (2003). "Results of the experiment on investigation of Germanium-76 double beta decay". Physics of Particles and Nuclei Letters. 2 (2): 77–81. arXiv:hep-ex/0309016. Bibcode:2003hep.ex....9016B.
  5. ^ a b c Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  6. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. ^ M. Agostini; et al. (2023-10-03). "Final Results of GERDA on the Two-Neutrino Double-β Decay Half-Life of 76Ge". Physical Review Letters. 131 (14). American Physical Society (APS): 142501. arXiv:2308.09795. Bibcode:2023PhRvL.131n2501A. doi:10.1103/physrevlett.131.142501. ISSN 0031-9007. PMID 37862664. S2CID 261049638.
  8. ^ a b Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.

One thought on “Cannabaceae

  1. Well, that’s interesting to know that Psilotum nudum are known as whisk ferns. Psilotum nudum is the commoner species of the two. While the P. flaccidum is a rare species and is found in the tropical islands. Both the species are usually epiphytic in habit and grow upon tree ferns. These species may also be terrestrial and grow in humus or in the crevices of the rocks.
    View the detailed Guide of Psilotum nudum: Detailed Study Of Psilotum Nudum (Whisk Fern), Classification, Anatomy, Reproduction

Leave a Reply