Cannabaceae

HD 3443
Observation data
Epoch J2000      Equinox J2000
Constellation Cetus
Right ascension 00h 37m 20.7196s[1]
Declination −24° 46′ 02.1843″[1]
Apparent magnitude (V) 5.57[2]
Characteristics
HD 3443A
Evolutionary stage main-sequence star
Spectral type G9V[3]
Apparent magnitude (g) 5.95[4]
HD 3443B
Evolutionary stage main-sequence star
Spectral type K0.5V[3]
Astrometry
Radial velocity (Rv)18.63[5] km/s
Proper motion (μ) RA: 1450.34 mas/yr[1]
Dec.: −19.38 mas/yr[1]
Parallax (π)64.93 ± 1.85 mas[3]
Distance50 ± 1 ly
(15.4 ± 0.4 pc)
Absolute magnitude (MV)5.31±0.08[2]
Orbit[6]
PrimaryHD 3443A
CompanionHD 3443B
Period (P)25.09 y
Semi-major axis (a)0.4627[7]"
(8.9 AU[8])
Eccentricity (e)0.235
Inclination (i)65.9[9]°
Semi-amplitude (K1)
(primary)
18.4 km/s
Details[9]
HD 3443A
Mass0.915±0.005[3] M
Radius0.92±0.05 R
Luminosity1.2[8] L
Temperature5449[8] K
Metallicity [Fe/H]−0.12[2] dex
Rotation32.6±4.89 d
Rotational velocity (v sin i)2.7±1.3 km/s
Age9.36[2] Gyr
HD 3443B
Mass0.864±0.005[3] M
Other designations
CD-25 225, CPD CPD-25 64, Gliese 25, HIP 2941, HR 159, 2MASS J00372057-2446023, WDS 00373–2446
HD 3443A: Gaia EDR3 2347260998051944448, TYC 6421-1924-1
HD 3443B: TYC 6421-1924-2
Database references
SIMBADdata

HD 3443 is a binary system composed of medium-mass main sequence stars in the constellation of Cetus about 50 light years away.

System

[edit]

This binary star system, with an orbital semimajor axis 8.9 AU, has not had any circumstellar dust detected as of 2020.[8] While the habitable zones of the stars stretch from 0.55 to 0.95 AU from the stars, planetary orbits with a semimajor axis beyond 1.87 AU would become unstable due to the influence of the binary companion.[10]

Properties

[edit]

The star system is enriched in oxygen compared to the Solar System, having 140% of solar oxygen abundance,[11] but is depleted in heavier elements, having 75% of solar abundance of iron.[2]

References

[edit]
  1. ^ a b c van Leeuwen, F. (November 2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. S2CID 18759600.
  2. ^ a b c d e Davidson, James W.; Baptista, Brian J.; Horch, Elliott P.; Franz, Otto; Van Altena, William F. (2009). "A Photometric Analysis of Seventeen Binary Stars Using Speckle Imaging". The Astronomical Journal. 138 (5): 1354–1364. Bibcode:2009AJ....138.1354D. doi:10.1088/0004-6256/138/5/1354.
  3. ^ a b c d e Andrade, Manuel (2019). "Colour-dependent accurate modelling of dynamical parallaxes and masses of visual binaries". Astronomy & Astrophysics. 630: A96. Bibcode:2019A&A...630A..96A. doi:10.1051/0004-6361/201936199.
  4. ^ Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  5. ^ Pourbaix, D.; et al. (September 2004). "SB9: The ninth catalogue of spectroscopic binary orbits". Astronomy and Astrophysics. 424: 727–732. arXiv:astro-ph/0406573. Bibcode:2004A&A...424..727P. doi:10.1051/0004-6361:20041213. S2CID 119387088.
  6. ^ Pourbaix, D. (2000). "Resolved double-lined spectroscopic binaries: A neglected source of hypothesis-free parallaxes and stellar masses". Astronomy and Astrophysics Supplement Series. 145 (2): 215–222. Bibcode:2000A&AS..145..215P. doi:10.1051/aas:2000237.
  7. ^ Tokovinin, A.; Cantarutti, R.; Tighe, R.; Schurter, P.; Van Der Bliek, N.; Martinez, M.; Mondaca, E. (2010). "High-Resolution Imaging at the SOAR Telescope". Publications of the Astronomical Society of the Pacific. 122 (898): 1483–1494. arXiv:1010.4176. Bibcode:2010PASP..122.1483T. doi:10.1086/657903. S2CID 26826524.
  8. ^ a b c d Su, Kate Y L.; Kennedy, Grant M.; Yelverton, Ben (2020). "No significant correlation between radial velocity planet presence and debris disc properties". Monthly Notices of the Royal Astronomical Society. 495 (2): 1943–1957. arXiv:2005.03573. doi:10.1093/mnras/staa1316.
  9. ^ a b Justesen, A. B.; Albrecht, S. (2020). "The spin-orbit alignment of visual binaries". Astronomy & Astrophysics. 642: A212. arXiv:2008.12068. Bibcode:2020A&A...642A.212J. doi:10.1051/0004-6361/202039138. S2CID 221340982.
  10. ^ Jaime, Luisa G.; Aguilar, Luis; Pichardo, Barbara (2014). "Habitable zones with stable orbits for planets around binary systems". Monthly Notices of the Royal Astronomical Society. 443 (1): 260–274. arXiv:1401.1006. Bibcode:2014MNRAS.443..260J. doi:10.1093/mnras/stu1052.
  11. ^ Maldonado, J.; Villaver, E. (2016). "Evolved stars and the origin of abundance trends in planet hosts". Astronomy & Astrophysics. 588: A98. arXiv:1602.00835. Bibcode:2016A&A...588A..98M. doi:10.1051/0004-6361/201527883. S2CID 119212009.

One thought on “Cannabaceae

  1. Well, that’s interesting to know that Psilotum nudum are known as whisk ferns. Psilotum nudum is the commoner species of the two. While the P. flaccidum is a rare species and is found in the tropical islands. Both the species are usually epiphytic in habit and grow upon tree ferns. These species may also be terrestrial and grow in humus or in the crevices of the rocks.
    View the detailed Guide of Psilotum nudum: Detailed Study Of Psilotum Nudum (Whisk Fern), Classification, Anatomy, Reproduction

Leave a Reply