Cannabaceae

In metric geometry, asymptotic dimension of a metric space is a large-scale analog of Lebesgue covering dimension. The notion of asymptotic dimension was introduced by Mikhail Gromov in his 1993 monograph Asymptotic invariants of infinite groups[1] in the context of geometric group theory, as a quasi-isometry invariant of finitely generated groups. As shown by Guoliang Yu, finitely generated groups of finite homotopy type with finite asymptotic dimension satisfy the Novikov conjecture.[2] Asymptotic dimension has important applications in geometric analysis and index theory.

Formal definition

[edit]

Let be a metric space and be an integer. We say that if for every there exists a uniformly bounded cover of such that every closed -ball in intersects at most subsets from . Here 'uniformly bounded' means that .

We then define the asymptotic dimension as the smallest integer such that , if at least one such exists, and define otherwise.

Also, one says that a family of metric spaces satisfies uniformly if for every and every there exists a cover of by sets of diameter at most (independent of ) such that every closed -ball in intersects at most subsets from .

Examples

[edit]
  • If is a metric space of bounded diameter then .
  • .
  • .
  • .

Properties

[edit]
  • If is a subspace of a metric space , then .
  • For any metric spaces and one has .
  • If then .
  • If is a coarse embedding (e.g. a quasi-isometric embedding), then .
  • If and are coarsely equivalent metric spaces (e.g. quasi-isometric metric spaces), then .
  • If is a real tree then .
  • Let be a Lipschitz map from a geodesic metric space to a metric space . Suppose that for every the set family satisfies the inequality uniformly. Then See[3]
  • If is a metric space with then admits a coarse (uniform) embedding into a Hilbert space.[4]
  • If is a metric space of bounded geometry with then admits a coarse embedding into a product of locally finite simplicial trees.[5]

Asymptotic dimension in geometric group theory

[edit]

Asymptotic dimension achieved particular prominence in geometric group theory after a 1998 paper of Guoliang Yu[2] , which proved that if is a finitely generated group of finite homotopy type (that is with a classifying space of the homotopy type of a finite CW-complex) such that , then satisfies the Novikov conjecture. As was subsequently shown,[6] finitely generated groups with finite asymptotic dimension are topologically amenable, i.e. satisfy Guoliang Yu's Property A introduced in[7] and equivalent to the exactness of the reduced C*-algebra of the group.

  • Mapping class groups of orientable finite type surfaces have finite asymptotic dimension.[11]
  • Let be a connected Lie group and let be a finitely generated discrete subgroup. Then .[12]
  • It is not known if has finite asymptotic dimension for .[13]

References

[edit]
  1. ^ Gromov, Mikhael (1993). "Asymptotic Invariants of Infinite Groups". Geometric Group Theory. London Mathematical Society Lecture Note Series. Vol. 2. Cambridge University Press. ISBN 978-0-521-44680-8.
  2. ^ a b Yu, G. (1998). "The Novikov conjecture for groups with finite asymptotic dimension". Annals of Mathematics. 147 (2): 325–355. doi:10.2307/121011. JSTOR 121011. S2CID 17189763.
  3. ^ Bell, G.C.; Dranishnikov, A.N. (2006). "A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory". Transactions of the American Mathematical Society. 358 (11): 4749–64. doi:10.1090/S0002-9947-06-04088-8. MR 2231870.
  4. ^ Roe, John (2003). Lectures on Coarse Geometry. University Lecture Series. Vol. 31. American Mathematical Society. ISBN 978-0-8218-3332-2.
  5. ^ Dranishnikov, Alexander (2003). "On hypersphericity of manifolds with finite asymptotic dimension". Transactions of the American Mathematical Society. 355 (1): 155–167. doi:10.1090/S0002-9947-02-03115-X. MR 1928082.
  6. ^ Dranishnikov, Alexander (2000). "Асимптотическая топология" [Asymptotic topology]. Uspekhi Mat. Nauk (in Russian). 55 (6): 71–16. doi:10.4213/rm334.
    Dranishnikov, Alexander (2000). "Asymptotic topology". Russian Mathematical Surveys. 55 (6): 1085–1129. arXiv:math/9907192. Bibcode:2000RuMaS..55.1085D. doi:10.1070/RM2000v055n06ABEH000334. S2CID 250889716.
  7. ^ Yu, Guoliang (2000). "The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space". Inventiones Mathematicae. 139 (1): 201–240. Bibcode:2000InMat.139..201Y. doi:10.1007/s002229900032. S2CID 264199937.
  8. ^ Roe, John (2005). "Hyperbolic groups have finite asymptotic dimension". Proceedings of the American Mathematical Society. 133 (9): 2489–90. doi:10.1090/S0002-9939-05-08138-4. MR 2146189.
  9. ^ Osin, Densi (2005). "Asymptotic dimension of relatively hyperbolic groups". International Mathematics Research Notices. 2005 (35): 2143–61. arXiv:math/0411585. doi:10.1155/IMRN.2005.2143. S2CID 16743152.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  10. ^ Bell, G.; Dranishnikov, A. (2004). "On asymptotic dimension of groups acting on trees". Geometriae Dedicata. 103 (1): 89–101. arXiv:math/0111087. doi:10.1023/B:GEOM.0000013843.53884.77. S2CID 14631642.
  11. ^ Bestvina, Mladen; Fujiwara, Koji (2002). "Bounded cohomology of subgroups of mapping class groups". Geometry & Topology. 6 (1): 69–89. arXiv:math/0012115. doi:10.2140/gt.2002.6.69. S2CID 11350501.
  12. ^ Ji, Lizhen (2004). "Asymptotic dimension and the integral K-theoretic Novikov conjecture for arithmetic groups" (PDF). Journal of Differential Geometry. 68 (3): 535–544. doi:10.4310/jdg/1115669594.
  13. ^ Vogtmann, Karen (2015). "On the geometry of Outer space". Bulletin of the American Mathematical Society. 52 (1): 27–46. doi:10.1090/S0273-0979-2014-01466-1. MR 3286480. Ch. 9.1

Further reading

[edit]

One thought on “Cannabaceae

  1. Well, that’s interesting to know that Psilotum nudum are known as whisk ferns. Psilotum nudum is the commoner species of the two. While the P. flaccidum is a rare species and is found in the tropical islands. Both the species are usually epiphytic in habit and grow upon tree ferns. These species may also be terrestrial and grow in humus or in the crevices of the rocks.
    View the detailed Guide of Psilotum nudum: Detailed Study Of Psilotum Nudum (Whisk Fern), Classification, Anatomy, Reproduction

Leave a Reply