Cannabaceae

In mathematics, an element of a *-algebra is called self-adjoint if it is the same as its adjoint (i.e. ).

Definition

[edit]

Let be a *-algebra. An element is called self-adjoint if .[1]

The set of self-adjoint elements is referred to as .

A subset that is closed under the involution *, i.e. , is called self-adjoint.[2]

A special case of particular importance is the case where is a complete normed *-algebra, that satisfies the C*-identity (), which is called a C*-algebra.

Especially in the older literature on *-algebras and C*-algebras, such elements are often called hermitian.[1] Because of that the notations , or for the set of self-adjoint elements are also sometimes used, even in the more recent literature.

Examples

[edit]

Criteria

[edit]

Let be a *-algebra. Then:

  • Let , then is self-adjoint, since . A similarly calculation yields that is also self-adjoint.[6]
  • Let be the product of two self-adjoint elements . Then is self-adjoint if and commutate, since always holds.[1]
  • If is a C*-algebra, then a normal element is self-adjoint if and only if its spectrum is real, i.e. .[5]

Properties

[edit]

In *-algebras

[edit]

Let be a *-algebra. Then:

  • Each element can be uniquely decomposed into real and imaginary parts, i.e. there are uniquely determined elements , so that holds. Where and .[1]
  • The set of self-adjoint elements is a real linear subspace of . From the previous property, it follows that is the direct sum of two real linear subspaces, i.e. .[7]
  • If is self-adjoint, then is normal.[1]
  • The *-algebra is called a hermitian *-algebra if every self-adjoint element has a real spectrum .[8]

In C*-algebras

[edit]

Let be a C*-algebra and . Then:

  • For the spectrum or holds, since is real and holds for the spectral radius, because is normal.[9]
  • According to the continuous functional calculus, there exist uniquely determined positive elements , such that with . For the norm, holds.[10] The elements and are also referred to as the positive and negative parts. In addition, holds for the absolute value defined for every element .[11]
  • For every and odd , there exists a uniquely determined that satisfies , i.e. a unique -th root, as can be shown with the continuous functional calculus.[12]

See also

[edit]

Notes

[edit]
  1. ^ a b c d e f Dixmier 1977, p. 4.
  2. ^ Dixmier 1977, p. 3.
  3. ^ Palmer 2001, p. 800.
  4. ^ Dixmier 1977, pp. 3–4.
  5. ^ a b Kadison & Ringrose 1983, p. 271.
  6. ^ Palmer 2001, pp. 798–800.
  7. ^ Palmer 2001, p. 798.
  8. ^ Palmer 2001, p. 1008.
  9. ^ Kadison & Ringrose 1983, p. 238.
  10. ^ Kadison & Ringrose 1983, p. 246.
  11. ^ Dixmier 1977, p. 15.
  12. ^ Blackadar 2006, p. 63.

References

[edit]
  • Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. p. 63. ISBN 3-540-28486-9.
  • Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. English translation of Les C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
  • Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3.
  • Palmer, Theodore W. (2001). Banach algebras and the general theory of*-algebras: Volume 2,*-algebras. Cambridge university press. ISBN 0-521-36638-0.

One thought on “Cannabaceae

  1. Well, that’s interesting to know that Psilotum nudum are known as whisk ferns. Psilotum nudum is the commoner species of the two. While the P. flaccidum is a rare species and is found in the tropical islands. Both the species are usually epiphytic in habit and grow upon tree ferns. These species may also be terrestrial and grow in humus or in the crevices of the rocks.
    View the detailed Guide of Psilotum nudum: Detailed Study Of Psilotum Nudum (Whisk Fern), Classification, Anatomy, Reproduction

Leave a Reply