Cannabaceae

In classical algebraic geometry, the genus–degree formula relates the degree d of an irreducible plane curve with its arithmetic genus g via the formula:

Here "plane curve" means that is a closed curve in the projective plane . If the curve is non-singular the geometric genus and the arithmetic genus are equal, but if the curve is singular, with only ordinary singularities, the geometric genus is smaller. More precisely, an ordinary singularity of multiplicity r decreases the genus by .[1]

Proof[edit]

The genus–degree formula can be proven from the adjunction formula; for details, see Adjunction formula § Applications to curves.[2]

Generalization[edit]

For a non-singular hypersurface of degree d in the projective space of arithmetic genus g the formula becomes:

where is the binomial coefficient.

Notes[edit]

  1. ^ Semple, John Greenlees; Roth, Leonard. Introduction to Algebraic Geometry (1985 ed.). Oxford University Press. pp. 53–54. ISBN 0-19-853363-2. MR 0814690.
  2. ^ Algebraic geometry, Robin Hartshorne, Springer GTM 52, ISBN 0-387-90244-9, chapter V, example 1.5.1

See also[edit]

References[edit]

One thought on “Cannabaceae

  1. Well, that’s interesting to know that Psilotum nudum are known as whisk ferns. Psilotum nudum is the commoner species of the two. While the P. flaccidum is a rare species and is found in the tropical islands. Both the species are usually epiphytic in habit and grow upon tree ferns. These species may also be terrestrial and grow in humus or in the crevices of the rocks.
    View the detailed Guide of Psilotum nudum: Detailed Study Of Psilotum Nudum (Whisk Fern), Classification, Anatomy, Reproduction

Leave a Reply