Cannabaceae

In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element x in the set, yields x. One of the most familiar additive identities is the number 0 from elementary mathematics, but additive identities occur in other mathematical structures where addition is defined, such as in groups and rings.

Elementary examples[edit]

Formal definition[edit]

Let N be a group that is closed under the operation of addition, denoted +. An additive identity for N, denoted e, is an element in N such that for any element n in N,

Further examples[edit]

  • In a group, the additive identity is the identity element of the group, is often denoted 0, and is unique (see below for proof).
  • A ring or field is a group under the operation of addition and thus these also have a unique additive identity 0. This is defined to be different from the multiplicative identity 1 if the ring (or field) has more than one element. If the additive identity and the multiplicative identity are the same, then the ring is trivial (proved below).
  • In the ring Mm × n(R) of m-by-n matrices over a ring R, the additive identity is the zero matrix,[1] denoted O or 0, and is the m-by-n matrix whose entries consist entirely of the identity element 0 in R. For example, in the 2×2 matrices over the integers the additive identity is
  • In the quaternions, 0 is the additive identity.
  • In the ring of functions from , the function mapping every number to 0 is the additive identity.
  • In the additive group of vectors in the origin or zero vector is the additive identity.

Properties[edit]

The additive identity is unique in a group[edit]

Let (G, +) be a group and let 0 and 0' in G both denote additive identities, so for any g in G,

It then follows from the above that

The additive identity annihilates ring elements[edit]

In a system with a multiplication operation that distributes over addition, the additive identity is a multiplicative absorbing element, meaning that for any s in S, s · 0 = 0. This follows because:

The additive and multiplicative identities are different in a non-trivial ring[edit]

Let R be a ring and suppose that the additive identity 0 and the multiplicative identity 1 are equal, i.e. 0 = 1. Let r be any element of R. Then

proving that R is trivial, i.e. R = {0}. The contrapositive, that if R is non-trivial then 0 is not equal to 1, is therefore shown.

See also[edit]

References[edit]

  1. ^ Weisstein, Eric W. "Additive Identity". mathworld.wolfram.com. Retrieved 2020-09-07.

Bibliography[edit]

  • David S. Dummit, Richard M. Foote, Abstract Algebra, Wiley (3rd ed.): 2003, ISBN 0-471-43334-9.

External links[edit]

One thought on “Cannabaceae

  1. Well, that’s interesting to know that Psilotum nudum are known as whisk ferns. Psilotum nudum is the commoner species of the two. While the P. flaccidum is a rare species and is found in the tropical islands. Both the species are usually epiphytic in habit and grow upon tree ferns. These species may also be terrestrial and grow in humus or in the crevices of the rocks.
    View the detailed Guide of Psilotum nudum: Detailed Study Of Psilotum Nudum (Whisk Fern), Classification, Anatomy, Reproduction

Leave a Reply