Cannabaceae

3-Methoxytyramine
Skeletal formula of 3-methoxytyramine
Ball-and-stick model of the 3-methoxytyramine molecule
Names
Preferred IUPAC name
4-(2-Aminoethyl)-2-methoxyphenol
Other names
3-O-Methyldopamine
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.122.789 Edit this at Wikidata
MeSH 3-methoxytyramine
UNII
  • InChI=1S/C9H13NO2/c1-12-9-6-7(4-5-10)2-3-8(9)11/h2-3,6,11H,4-5,10H2,1H3 ☒N
    Key: DIVQKHQLANKJQO-UHFFFAOYSA-N ☒N
  • InChI=1/C9H13NO2/c1-12-9-6-7(4-5-10)2-3-8(9)11/h2-3,6,11H,4-5,10H2,1H3
    Key: DIVQKHQLANKJQO-UHFFFAOYAB
  • COc1cc(ccc1O)CCN
Properties
C9H13NO2
Molar mass 167.21 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

3-Methoxytyramine (3-MT), also known as 3-methoxy-4-hydroxyphenethylamine, is a human trace amine that occurs as a metabolite of the neurotransmitter dopamine.[1] It is formed by the introduction of a methyl group to dopamine by the enzyme catechol-O-methyl transferase (COMT). 3-MT can be further metabolized by the enzyme monoamine oxidase (MAO) to form homovanillic acid (HVA), which is then typically excreted in the urine.

Originally thought to be physiologically inactive, 3-MT has recently been shown to act as an agonist of human TAAR1.[1][2]

Occurrence

[edit]

3-Methoxytyramine occurs naturally in the prickly pear cactus (genus Opuntia),[3] and is in general widespread throughout the Cactaceae.[4] It has also been found in crown gall tumors on Nicotiana sp.[5]

In humans, 3-methoxytyramine is a trace amine that occurs as a metabolite of dopamine.[1]

See also

[edit]

References

[edit]
  1. ^ a b c Khan MZ, Nawaz W (October 2016). "The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system". Biomed. Pharmacother. 83: 439–449. doi:10.1016/j.biopha.2016.07.002. PMID 27424325.
  2. ^ Sotnikova TD, Beaulieu JM, Espinoza S, et al. (2010). "The dopamine metabolite 3-methoxytyramine is a neuromodulator". PLOS ONE. 5 (10): e13452. Bibcode:2010PLoSO...513452S. doi:10.1371/journal.pone.0013452. PMC 2956650. PMID 20976142.
  3. ^ Neuwinger HD (1996). "Cactaceae". African ethnobotany: poisons and drugs: chemistry, pharmacology, toxicology. CRC Press. p. 271. ISBN 978-3-8261-0077-2. Retrieved on June 12, 2009 through Google Book Search.
  4. ^ Smith T. A. (1977). "Phenethylamine and related compounds in plants". Phytochemistry. 16 (1): 9–18. Bibcode:1977PChem..16....9S. doi:10.1016/0031-9422(77)83004-5.
  5. ^ Mitchell S. D., Firmin J. L., Gray D. O. (1984). "Enhanced 3-methoxytyramine levels in crown gall tumours and other undifferentiated plant tissues". Biochem. J. 221 (3): 891–5. doi:10.1042/bj2210891. PMC 1144120. PMID 6477503.
  6. ^ Broadley KJ (March 2010). "The vascular effects of trace amines and amphetamines". Pharmacology & Therapeutics. 125 (3): 363–375. doi:10.1016/j.pharmthera.2009.11.005. PMID 19948186.
  7. ^ Lindemann L, Hoener MC (May 2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends in Pharmacological Sciences. 26 (5): 274–281. doi:10.1016/j.tips.2005.03.007. PMID 15860375.
  8. ^ Wang X, Li J, Dong G, Yue J (February 2014). "The endogenous substrates of brain CYP2D". European Journal of Pharmacology. 724: 211–218. doi:10.1016/j.ejphar.2013.12.025. PMID 24374199.

One thought on “Cannabaceae

  1. Well, that’s interesting to know that Psilotum nudum are known as whisk ferns. Psilotum nudum is the commoner species of the two. While the P. flaccidum is a rare species and is found in the tropical islands. Both the species are usually epiphytic in habit and grow upon tree ferns. These species may also be terrestrial and grow in humus or in the crevices of the rocks.
    View the detailed Guide of Psilotum nudum: Detailed Study Of Psilotum Nudum (Whisk Fern), Classification, Anatomy, Reproduction

Leave a Reply