Legality of Cannabis by U.S. Jurisdiction

In functional analysis, a topological vector space (TVS) is called ultrabornological if every bounded linear operator from into another TVS is necessarily continuous. A general version of the closed graph theorem holds for ultrabornological spaces. Ultrabornological spaces were introduced by Alexander Grothendieck (Grothendieck [1955, p. 17] "espace du type (β)").[1]

Definitions[edit]

Let be a topological vector space (TVS).

Preliminaries[edit]

A disk is a convex and balanced set. A disk in a TVS is called bornivorous[2] if it absorbs every bounded subset of

A linear map between two TVSs is called infrabounded[2] if it maps Banach disks to bounded disks.

A disk in a TVS is called infrabornivorous if it satisfies any of the following equivalent conditions:

  1. absorbs every Banach disks in

while if locally convex then we may add to this list:

  1. the gauge of is an infrabounded map;[2]

while if locally convex and Hausdorff then we may add to this list:

  1. absorbs all compact disks;[2] that is, is "compactivorious".

Ultrabornological space[edit]

A TVS is ultrabornological if it satisfies any of the following equivalent conditions:

  1. every infrabornivorous disk in is a neighborhood of the origin;[2]

while if is a locally convex space then we may add to this list:

  1. every bounded linear operator from into a complete metrizable TVS is necessarily continuous;
  2. every infrabornivorous disk is a neighborhood of 0;
  3. be the inductive limit of the spaces as D varies over all compact disks in ;
  4. a seminorm on that is bounded on each Banach disk is necessarily continuous;
  5. for every locally convex space and every linear map if is bounded on each Banach disk then is continuous;
  6. for every Banach space and every linear map if is bounded on each Banach disk then is continuous.

while if is a Hausdorff locally convex space then we may add to this list:

  1. is an inductive limit of Banach spaces;[2]

Properties[edit]

Every locally convex ultrabornological space is barrelled,[2] quasi-ultrabarrelled space, and a bornological space but there exist bornological spaces that are not ultrabornological.

Examples and sufficient conditions[edit]

The finite product of locally convex ultrabornological spaces is ultrabornological.[2] Inductive limits of ultrabornological spaces are ultrabornological.

Every Hausdorff sequentially complete bornological space is ultrabornological.[2] Thus every complete Hausdorff bornological space is ultrabornological. In particular, every Fréchet space is ultrabornological.[2]

The strong dual space of a complete Schwartz space is ultrabornological.

Every Hausdorff bornological space that is quasi-complete is ultrabornological.[citation needed]

Counter-examples

There exist ultrabarrelled spaces that are not ultrabornological. There exist ultrabornological spaces that are not ultrabarrelled.

See also[edit]

External links[edit]

References[edit]

  1. ^ Narici & Beckenstein 2011, p. 441.
  2. ^ a b c d e f g h i j Narici & Beckenstein 2011, pp. 441–457.