Trichome

Taxifolin
Names
IUPAC name
(2R,3R)-3,3′,4′,5,7-Pentahydroxyflavan-4-one
Systematic IUPAC name
(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dihydro-4H-1-benzopyran-4-one
Other names
Dihydroquercetin
Taxifoliol
Distylin
(+)-Taxifolin
trans-Dihydroquercetin
(+)-Dihydroquercetin
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.006.859 Edit this at Wikidata
EC Number
  • 207-543-4
KEGG
UNII
  • InChI=1S/C15H12O7/c16-7-4-10(19)12-11(5-7)22-15(14(21)13(12)20)6-1-2-8(17)9(18)3-6/h1-5,14-19,21H/t14-,15+/m0/s1 ☒N
    Key: CXQWRCVTCMQVQX-LSDHHAIUSA-N ☒N
  • InChI=1/C15H12O7/c16-7-4-10(19)12-11(5-7)22-15(14(21)13(12)20)6-1-2-8(17)9(18)3-6/h1-5,14-19,21H/t14-,15+/m0/s1
    Key: CXQWRCVTCMQVQX-LSDHHAIUBE
  • OC1=C(C([C@H](O)[C@@H](C2=CC(O)=C(O)C=C2)O3)=O)C3=CC(O)=C1
Properties
C15H12O7
Molar mass 304.254 g·mol−1
Appearance Brown powder
Melting point 237 °C (459 °F; 510 K)[1]
UV-vismax) 290, 327 nm (methanol)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Taxifolin (5,7,3',4'-flavan-on-ol), also known as dihydroquercetin, belongs to the subclass flavanonols in the flavonoids, which in turn is a class of polyphenols. It is extracted from plants such as Siberian larch and milk thistle. [2]

Stereocenters[edit]

Taxifolin has two stereocenters on the C-ring, as opposed to quercetin which has none.[3] For example, (+)-taxifolin has (2R,3R)-configuration, making it 1 out of 4 stereoisomers that comprise 2 pairs of enantiomers.[4]

Natural occurrences[edit]

Taxifolin is found in non-glutinous rice boiled with adzuki bean (adzuki-meshi).[5]

It can be found in conifers like the Siberian larch, Larix sibirica, in Russia, in Pinus roxburghii,[6] in Cedrus deodara[6] and in the Chinese yew, Taxus chinensis var. mairei.[7]

It is also found in the silymarin extract from the milk thistle seeds.

Taxifolin is present in vinegars aged in cherry wood.[8]

Taxifolin, and flavonoids in general, can be found in many beverages and products. Specifically, taxifolin is found in plant-based foods like fruit, vegetables, wine, tea, and cocoa.[9]

Pharmacology[edit]

Taxifolin is not mutagenic and less toxic than the related compound quercetin.[10] It acts as a potential chemopreventive agent by regulating genes via an ARE-dependent mechanism.[11] Taxifolin has shown to inhibit the ovarian cancer cell growth in a dose-dependent manner.[12] However, in this same study, taxifolin was the least effective flavonoid in the inhibition of VEGF expression.[13] There is also a strong correlation (with a correlation coefficient of 0.93) between the antiproliferative effects of taxifolin derivatives on murine skin fibroblasts and human breast cancer cells.[14]

Taxifolin has shown to have anti-proliferative effects on many types of cancer cells by inhibiting cancer cell lipogenesis. By inhibiting the fatty acid synthase in cancer cells, taxifolin is able to prevent the growth and spread of cancer cells.[15]

Taxifolin also stops the effects of overexpression of P-glycoprotein, which prevents the development of chemoresistance. Taxifolin does this via inhibition of rhodamine 123 and doxorubicin.[16]

The capacity of taxifolin to stimulate fibril formation and promote stabilization of fibrillar forms of collagen can be used in medicine.[17] Also taxifolin inhibited the cellular melanogenesis as effectively as arbutin, one of the most widely used hypopigmenting agents in cosmetics.

Taxifolin also enhances the efficacy of conventional antibiotics like levofloxacin and ceftazidime in vitro, which have potential for combinatory therapy of patients infected with methicillin-resistant Staphylococcus aureus (MRSA).[18]

Taxifolin can act as an anti-flammant because of its ability to inhibit the synthesis of cyclooxygenase by blocking prostaglandin synthesis. [19] Indeed, the taxifolin-mediated inhibition of the E2 prostaglandin synthesis (by PLA2 phospholipase) was shown to prevent beta-amyloid-induced impairment of synapsis genesis and related memory deficits, which take part in the pathogenesis of neurodegenerative disorders like Alzheimer's disease.[20] Other observed benefits comprise the reduction of beta-amyloid accumulation in the brain vessels, restoration of vascular integrity and memory improvement in cerebral amyloid angiopathy, a condition often linked to alzheimer's.[21] Cognitive performance has even been raised in young healthy adults by taxifolin administration.[22]

Like other flavonoids, taxifolin is able to function as an antifungal agent by blocking multiple pathways that promote the growth and proliferation of fungi. [19]

Taxifolin has also been found to reduce inhibitor of intestinal mobility especially when antagonized by verapamil.[19]

Taxifolin has also been shown to be anti-hyperlipidemic by maintaining the normal lipid profile of the liver and keeping lipid excretion at normal levels. Taxifolin prevents hyperlipidemia by reducing the esterification of cellular cholesterol, phospholipid, and triacylglycerol synthesis.[16]

Taxifolin, as well as many other flavonoids, has been found to act as a non-selective antagonist of the opioid receptors, albeit with somewhat weak affinity.[23] Taxifolin shows promising pharmacological activities in the management of inflammation, tumors, microbial infections, oxidative stress, cardiovascular, and liver disorders [24]

Taxifolin has been found to act as an agonist of the adiponectin receptor 2 (AdipoR2).[25]

Metabolism[edit]

The enzyme taxifolin 8-monooxygenase uses taxifolin, NADH, NADPH, H+, and O2 to produce 2,3-dihydrogossypetin, NAD+, NADP+, and H2O.

The enzyme leucocyanidin oxygenase uses leucocyanidin, alpha-ketoglutarate, and O2 to produce cis-dihydroquercetin, taxifolin, succinate, CO2, and H2O.

Glycosides[edit]

Astilbin is the 3-O-rhamnoside of taxifolin. Taxifolin deoxyhexose can be found in açai fruits.[26]

Taxifolin 3-O-glucoside isomers have been separated from Chamaecyparis obtusa.[27]

(-)-2,3-trans-Dihydroquercetin-3'-O-β-D-glucopyranoside, a taxifolin glucoside has been extracted from the inner bark of Pinus densiflora and can act as an oviposition stimulant in the cerambycid beetle Monochamus alternatus.[28]

(2S,3S)-(-)-Taxifolin-3-O-β-D-glucopyranoside has been isolated from the root-sprouts of Agrimonia pilosa.[29]

(2R,3R)-Taxifolin-3'-O-β-D-pyranoglucoside has been isolated from the rhizome of Smilax glabra.[30]

Minor amount of taxifolin 4′-O-β-glucopyranoiside can be found in red onions.[31]

(2R,3R)-Taxifolin 3-O-arabinoside and (2S,3S)-taxifolin 3-O-arabinoside have been isolated from the leaves of Trachelospermum jasminoides[32] (star jasmine).

Derived natural compounds[edit]

References[edit]

  1. ^ Graham HM, Kurth EF (1949). "Constituents of Extractives from Douglas Fir". Industrial and Engineering Chemistry. 41 (2): 409–414. doi:10.1021/ie50470a035.
  2. ^ Title = Global Taxifolin Market Size was USD 167.90 Million in 2022| URL = https://www.reportprime.com/taxifolin-r195 | Date = 14 August 2023 | Website = https://www.reportprime.com/
  3. ^ "Quercetin". pubchem.ncbi.nlm.nih.gov.
  4. ^ "(+)-taxifolin (CHEBI:17948)". www.ebi.ac.uk.
  5. ^ Takahama (2016-10-01). "Antioxidative flavonoids in adzuki-meshi (rice boiled with adzuki bean) react with nitrite under simulated stomach conditions". Journal of Functional Foods. 26: 657–666. doi:10.1016/j.jff.2016.08.032.
  6. ^ a b Willför S, Mumtaz A, Karonen M, Reunanen M, Mohammad A, Harlamow R (August 2009). "Extractives in bark of different conifer species growing in Pakistan". Holzforschung. 63 (5): 551–558. doi:10.1515/HF.2009.095. S2CID 97003177.
  7. ^ Li C (2008). "Chemistry of Chinese yew, Taxus chinensis var. mairei". Biochemical Systematics and Ecology. 36 (4): 266–282. Bibcode:2008BioSE..36..266L. doi:10.1016/j.bse.2007.08.002.
  8. ^ Cerezoa AB, Tesfayea W, Soria-Díazb M, Torijac MJ, Mateoc E, Garcia-Parrillaa MC, Troncosoa AM (2010). "Effect of wood on the phenolic profile and sensory properties of wine vinegars during ageing". Journal of Food Composition and Analysis. 23 (2): 175–184. doi:10.1016/j.jfca.2009.08.008.
  9. ^ Brusselmans K, Vrolix R, Verhoeven G, Swinnen J (2005). "Induction of Cancer Cell Apoptosis by Flavonoids Is Associated with Their Ability to Inhibit Fatty Acid Synthase Activity". Journal of Biological Chemistry. 280 (7): 5636–5645. doi:10.1074/jbc.m408177200. PMID 15533929.
  10. ^ Makena PS, Pierce SC, Chung KT, Sinclair SE (2009). "Comparative mutagenic effects of structurally similar flavonoids quercetin and taxifolin on tester strains Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrA". Environmental and Molecular Mutagenesis. 50 (6): 451–9. Bibcode:2009EnvMM..50..451M. doi:10.1002/em.20487. PMID 19326464. S2CID 25826873.
  11. ^ Lee SB, Cha KH, Selenge D, Solongo A, Nho CW (2007). "The Chemopreventive Effect of Taxifolin Is Exerted through ARE-Dependent Gene Regulation". Biological & Pharmaceutical Bulletin. 30 (6): 1074–9. doi:10.1248/bpb.30.1074. PMID 17541156.
  12. ^ Luo H, Jiang BH, King S, Chen YC (2008). "Inhibition of Cell Growth and VEGF Expression in Ovarian Cancer Cells by Flavonoids". Nutrition and Cancer. 60 (6): 800–9. doi:10.1080/01635580802100851. PMID 19005980. S2CID 43576449.
  13. ^ Luo H, Jiang BH, King SM, Chen YC (2008). "Inhibition of Cell Growth and VEGF Expression in Ovarian Cancer Cells by Flavonoids". Nutrition and Cancer. 60 (6): 800–809. doi:10.1080/01635580802100851. PMID 19005980. S2CID 43576449.
  14. ^ Rogovskiĭ VS, Matiushin AI, Shimanovskiĭ NL, Semeĭkin AV, Kukhareva TS, Koroteev AM, Koroteev MP, Nifant'ev EE (2010). "[Antiproliferative and antioxidant activity of new dihydroquercetin derivatives]". Eksp Klin Farmakol (in Russian). 73 (9): 39–42. PMID 21086652.
  15. ^ Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV (2005). "Induction of Cancer Cell Apoptosis by Flavonoids is Associated with Their Ability to Inhibit Fatty Acid Synthase Activity". Journal of Biological Chemistry. 280 (7): 5636–5645. doi:10.1074/jbc.M408177200. PMID 15533929.
  16. ^ a b Das, A.; Baidya, R.; Chakraborty, T.; Samanta, A. K.; Roy, S. Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomedicine & Pharmacotherapy 2021, 142, 17.
  17. ^ Tarahovsky YS, Selezneva II, Vasilieva NA, Egorochkin MA, Kim YA (2007). "Acceleration of fibril formation and thermal stabilization of collagen fibrils in the presence of taxifolin (dihydroquercetin)". Bulletin of Experimental Biology and Medicine. 144 (6): 791–4. doi:10.1007/s10517-007-0433-z. PMID 18856203. S2CID 22328651.
  18. ^ An J, Zuo GY, Hao XY, Wang GC, Li ZS (August 2011). "Antibacterial and synergy of a flavanonol rhamnoside with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA)". Phytomedicine. 18 (11): 990–3. doi:10.1016/j.phymed.2011.02.013. PMID 21466953.
  19. ^ a b c Saftar Asmi, K., et al. “Therapeutic Aspects of Taxifolin – An Update.” Therapeutic Aspects of Taxifolin – An Update - Journal of Advanced Pharmacy Education and Research, SPER Publications and Solutions Pvt. Ltd., 2017, https://japer.in/article/therapeutic-aspects-of-taxifolin-an-update .
  20. ^ Wang (2018). "Taxifolin". {{cite journal}}: Cite journal requires |journal= (help)
  21. ^ Saito, 2017
  22. ^ Shinozaki, 2023
  23. ^ Katavic PL, Lamb K, Navarro H, Prisinzano TE (August 2007). "Flavonoids as opioid receptor ligands: identification and preliminary structure-activity relationships". J. Nat. Prod. 70 (8): 1278–82. doi:10.1021/np070194x. PMC 2265593. PMID 17685652.
  24. ^ Sunil C, Xu B (2019). "An insight into the health-promoting effects of taxifolin (dihydroquercetin)". Phytochemistry. 166: 112066. Bibcode:2019PChem.166k2066S. doi:10.1016/J.PHYTOCHEM.2019.112066. PMID 31325613. S2CID 198131999.
  25. ^ Sun Y, Zang Z, Zhong L, Wu M, Su Q, Gao X, Zan W, Lin D, Zhao Y, Zhang Z (2013). "Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay". PLOS ONE. 8 (5): e63354. Bibcode:2013PLoSO...863354S. doi:10.1371/journal.pone.0063354. PMC 3653934. PMID 23691032.
  26. ^ Gallori S (2004). "Polyphenolic Constituents of Fruit Pulp of Euterpe oleracea Mart. (Açai palm)". Chromatographia. 59 (11–12). doi:10.1365/s10337-004-0305-x. S2CID 94388806.
  27. ^ Sakushima A, Ohno K, Coskun M, Seki KI, Ohkura K (2002). "Separation and Identification of Taxifolin 3- O -Glucoside Isomers from Chamaecyparis Obtusa (Cupressaceae)". Natural Product Research. 16 (6): 383–7. doi:10.1080/10575630290033141. PMID 12462342. S2CID 28973885.
  28. ^ Sato M, Islam SQ, Awata S, Yamasaki T (1999). "Flavanonol glucoside and proanthocyanidins: Oviposition stimulants for the cerambycid beetle, Monochamus alternatus". Journal of Pesticide Science. 24 (2): 123–9. doi:10.1584/jpestics.24.123.
  29. ^ Pei YH, Li X, Zhu TR, Wu LJ (1990). "[Studies on the structure of a new flavanonol glucoside of the root-sprouts of Agrimonia pilosa Ledeb]". Yao Xue Xue Bao (in Chinese). 25 (4): 267–70. PMID 2281787.
  30. ^ Yuan JZ, Dou DQ, Chen YJ, et al. (September 2004). "[Studies on dihydroflavonol glycosides from rhizome of Smilax glabra]". Zhongguo Zhong Yao Za Zhi (in Chinese). 29 (9): 867–70. PMID 15575206.
  31. ^ Fossen T (1998). "Flavonoids from red onion (Allium cepa)". Phytochemistry. 47 (2): 281–285. Bibcode:1998PChem..47..281F. doi:10.1016/S0031-9422(97)00423-8.
  32. ^ Hosoi S, Shimizu E, Ohno K, Yokosawa R, Kuninaga S, Coskun M, Sakushima A (2006). "Structural Studies of Zoospore Attractants from Trachelospermum jasminoides var. pubescens: Taxifolin 3-O-glycosides". Phytochemical Analysis. 17 (1): 20–4. Bibcode:2006PChAn..17...20H. doi:10.1002/pca.876. PMID 16454472.
  33. ^ Heller W, Britsch L, Forkmann G, Grisebach H (1985). "Leucoanthocyanidins as intermediates in anthocyanidin biosynthesis in flowers of Matthiola incana R. Br". Planta. 163 (2): 191–6. Bibcode:1985Plant.163..191H. doi:10.1007/BF00393505. PMID 24249337. S2CID 20854538.

Leave a Reply